
Design and Evaluation of Competition-based Hacking

Exercises

Eman Alashwali

Information Systems Department

King Abdulaziz University

Jeddah, Saudi Arabia

ealashwali@kau.edu.sa

Hanene Ben-Abdallah

Information Systems Department

King Abdulaziz University

Jeddah, Saudi Arabia

hbenabdallah@kau.edu.sa

Abstract— This paper describes the design and delivery of

two competitive-based small offensive security exercises in an

undergraduate Computer and Information Security course at the

Faculty of Computing and Information Technology, King

Abdulaziz University. We designed competition scenarios for two

small exercises based on known attacks. The first exercise aimed

to break the Windows Server 2008 password, and the second

sought to break the Wired Equivalent Privacy (WEP) wireless

network key (password). We present the competition scenarios

and design, including the required hardware and software in

each exercise. In addition, we give an overview about the attacks

and possible defenses against them. We also present the results of

a survey conducted to determine students’ sentiments towards

these types of exercises and to measure the effectiveness of these

exercises in supporting the course’s theoretical concepts from the

student perspective. The results strongly suggest that the

exercises were informative, motivating, stimulating, and

enjoyable. This work was only the first step for us. We look

forward to creating more challenging competitive-based exercises

and rewarding the teams that put forth superior efforts.

Keywords— Security; Computer hacking; Information security;

Education; Computer science education; Engineering education

I. INTRODUCTION

With the growing number of cyber-attacks, information
security education

1
 is more important than ever before.

Teaching students offensive techniques that allow them to
think like an attacker (i.e., teaching them the security mindset)
became essential to preparing good security engineers. In fact,
in the information security community, it is not uncommon to
hear that good security experts are good hackers, too.

As Schneier [1] describes it :

The security mindset involves thinking about how things
can be made to fail. It involves thinking like an attacker, an
adversary or a criminal.

He continues to highlight the importance of the security
mindset:

The lack of a security mindset explains a lot of bad security
out there: voting machines, electronic payment cards,

1
 In this paper, by information security education, we mean technical

education for university students.

medical devices, ID cards, internet protocols... Teaching
designers a security mindset will go a long way toward
making future technological systems more secure.

Hacking skills are extremely valuable these days, not only
for security and intelligence agencies but also for Information
Technology (IT) companies. For example, in 2013, the
Government Communications Headquarters (GCHQ), a UK
national security agency, launched a 4-stage online code
breaking puzzle for recruitment purposes. The competition was
titled “can you find it?” (See Figure 1). Only those who broke
the code were asked for their contact information to be
considered for a job at the GCHQ [2].

Valuing hacking skills as much as GCHQ does, most of the
large IT companies like Mozilla, Microsoft, Google, Facebook,
and Twitter appreciate and reward white hat hackers’ efforts to
report the security bugs in their systems [3] [4] [5] [6] [7]. For
example, Microsoft launched the “Mitigation Bypass Bounty”
program, which provides a reward of $100,000 USD to white
hat hackers who can exploit security vulnerabilities in the latest
version of the Microsoft operating system [4]. And in 2011,
Facebook announced the “Security Bug Bounty” program [6].
Their bounties start at $500 USD and increase based on the
severity of the bug reported [6]. In 2014, Facebook reported
having paid more than $2 million in bounties since launching
the program in 2011[8]. Furthermore, by 2013, two of the
bounty recipients accepted full-time positions with the
Facebook security team [9].

Fig. 1 CGHQ “Can you find it” recruitment competition [2].

The security mindset differs from the normal engineering
mindset; in the normal engineering mindset, engineers think
about how to make things work. In order to prepare students
for the security mindset, they must be trained in or exposed to
hands-on exercises that allow them to practice thinking like an
attacker. In 2014, in an interview with Reginaldo Silva (the
recipient of Facebook’s largest single bounty worth $33,500
USD), Silva was asked: “What particular skills or traits do you
think are required to be effective as a researcher?” He said
[10]:

I’m always looking for the counterexamples. If a given
assumption is valid 99 out of 100 times, I’m always trying
to find the 1 time where the assumption is not valid.

Interestingly, hacking does not always require sophisticated
skills or advanced devices. A system can be hacked simply by

thinking differently; that is the “security mindset”. For
example, in 2014, five-year-old Kristoffer Hassel was officially
acknowledged by Microsoft in the “Security Researcher
Acknowledgments for Microsoft Online Services” [11] for
breaking the security of Microsoft Xbox and bypassing his
father’s account verification by typing spaces [12]. In 2013,
there is the case of Khalil Shreateh, an unemployed
information systems graduate from Palestine, who, with a
“five-year-old laptop with broken keys and a broken battery”,
was able to exploit a Facebook bug that allowed him to post on
any Facebook page outside his friends list [13]. After several
failed attempts by Shreateh to get the Facebook security team’s
attention, he demonstrated the threat by hacking Mark
Zuckerberg's personal Facebook page [13].

Undoubtedly, hands-on exercises similar to these real-life
examples play a vital role in Computer Science and
Engineering education. Good teachers always strive to design
informative practical exercises that support the theoretical
concepts presented in the lectures. They also work to capture
students’ interest, to motivate and stimulate them, and to
provide them with enjoyable and competitive exercises.

In our previous work [14], we shared findings from an
experiment that involved incorporating hacking projects into
Computer and Information Security (CIS) lab exercises. The
students’ feedback revealed a positive response to hacking lab
exercises. This paper presents an extension of our efforts at
improving CIS lab exercises by teaching hacking skills and the
security mindset via small competitive-based hacking
exercises.

This paper has a two-fold motivation. First, we aim to
improve the CIS lab exercises by designing and delivering
competitive-based hacking exercises. The exercises were
related to theoretical concepts covered during the lectures.
Secondly, we aim to raise awareness of white hat hacking,
ethical hacking, and security mindset skills, all of which refer
to the same thing, namely: thinking like an attacker in order to
find vulnerabilities before the bad guy does. We believe that
such skills are not widely known, practiced, properly fostered,
guided, or advanced in our region (Middle East) by educators
or employers. An analogy to describe the importance of
fostering and guiding hacking skills involves the art of graffiti.
Graffiti can be a valuable nice piece of art if the talented

graffitists find the right place to practice it, proper guidance,
and appreciation; otherwise, it is considered harmful and may
be an illegal offense.

The remainder of this paper is organized as follows: in
section 2, we summarize several relevant works on hacking
competitions; in section 3, we provide a brief background
about the CIS course, the subject of this study; in section 4, we
describe each exercise scenario and the competition design; in
section 5, we present the evaluation results; and finally, in
section 6, we conclude.

II. BACKGROUND

In this section, we give a brief background about the CIS
course at the Faculty of Computing and Information
Technology, King Abdulaziz University (FCIT-KAU) - ladies
campus, where the experiment was conducted.

The CIS course is a mandatory course in the three
academic departments at FCIT: Computer Science (CS);
Information Technology (IT); and Information Systems (IS).
Originally, the lab curriculum of this course contains mostly
Java programming exercises in which students develop small
programs that implement cryptographic algorithms such as the
Data Encryption Standard (DES), Rivest Shamir Adleman
(RSA), etc. using Java libraries. In some primitive algorithms
such as “Caesar” and “Vigenère” ciphers, the students are
supposed to program the code without the use of Java
libraries. The lab exercises did not contain hacking exercises
or projects. Some breaking methods could have been
mentioned in the lectures but to the best of our knowledge,
students had never tried to implement an attack in either a
project or a small exercise.

In the 2012/2013 academic year, we proposed
incorporating hacking exercises into the lab curriculum. Our
experiment presented in detail in Incorporating hacking
projects in computer and information security education: an
empirical study [14]. This paper is a continuation of our
previous work in [14]; it is intended to improve the CIS lab
and to offer exercises that help students develop a security
mindset. In this work, we used a different method to deliver
the hacking exercises: small competition-based exercises
covering various security topics and attacks. In this way we
were able to involve all students in implementing multiple
hacking exercises. In contrast, in the project-based method
that we used in [14], each group was asked to select one topic
from various proposed topics and implement one attack.

III. COMPETITION EXERCISE DESIGN

To perform the competition-based lab exercises, we
proceeded as follows: first, we asked the students to organize
into groups of up to four students per group. Second, we
created a scenario for each competition. Third, we set up the
necessary platform for the two exercises of the competition.
For the first exercise, we created a Windows Server 2008
virtual machine; for the second one, we configured a WEP
wireless Access Point (AP). Fourth, since hacking exercises
can be misused either intentionally or unintentionally, and to
avoid any legal or ethical issues, it was important to take
precautions before we allow students to practice the attacks.

Therefore, we gave a short presentation about the cyber
security law in Saudi Arabia. Then, and before allowing
students implement any attack, we asked them to a sign a
pledge stating the rules that must be obeyed. The rules
described in detail in our previous work in which we dedicated
a section entitled Handling the ethical and legal concerns in
implementing hacking project [14]. Fifth, for each exercise,
we provided a lab session that described the attack, i.e., why it
occurred. We did not perform the attack in the lab, instead, we
left this to students as the lab exercise. We provided the
students with lab hand-outs that contained a step-by-step guide
on how to perform the attack in addition to providing them
with the required software and virtual machine (by sharing
them in a server). Finally, we asked the students to conduct the
attack. Each exercise was given a duration of one week. At the
end of the week, the students were required to submit the
result (the victim’s password) along with a proof of their work
(screen shots in the first exercise and video recording in the
second one). In addition, for the second exercise, the students
were required to perform the attack live during a 2-hour lab
session that we called “live-demo” for the attack.

In general, all groups that could break the password were
considered winners. However, the group that achieved the
attacker’s goal first received special recognition by having
their names posted on the lab instructor’s board and
announcing their names in the next lab.

In the following sections, we will describe each exercise in
more detail. The attacks we used in the competitions are
known attacks; there are plenty of online resources that
describe how to launch them. To some extent, today, they can
be considered general knowledge. However, we must
acknowledge that we learned about the two attacks and how to
perform them from lab sessions provided by Vasileios Giotsas
at University College London (UCL) [19] [20].

A. Exercise 1: Breaking Windows Server 2008 Password

1) An overview of the attack
Generally, in order to authenticate local users using their

passwords, operating systems store passwords locally (e.g. in a
file). When users login, the typed password is compared to the
stored one. Passwords must be stored securely so that it is
impossible for anyone to deduce users’ passwords if they
accessed this file. In other words, passwords must not be
stored in plain text.

In cryptography, a hash value is the output of a hash
function, a function that takes an arbitrary size of data as input
and outputs a fixed-size string. Cryptographic hash functions
must fulfill some basic security properties. One of the most
important properties is “pre-image resistance” which states
that given a hash value h, it should be infeasible to find a
message x such that H(x) = h. A hash function with this
property is also called a “one-way” hash function, which
means that it is infeasible to retrieve the original text simply
by knowing the hash. Another important security property of
hash functions is “collision resistance” which means it should
be infeasible to find two messages x, y where x ≠ y such that
H(x) = H(y).

The above two properties of hash functions made them a
suitable method for storing passwords for many operating
system vendors, including Windows systems. When
passwords are stored as hash values, the system authenticates
the user by computing the hash of the entered password and
compares it with the stored one.

However, storing passwords as hash values alone turned
out to be insufficient: if the user chooses a weak password, an
attacker who has access to the password hashes file (e.g.,
SAM file in Windows) can launch a brute-force or dictionary
attack. The attacker computes the hashes of password guesses
either by trying all possible combinations of digits or trying
dictionary words and then comparing the resulted hash with
the stored password hash until a match is found [21]. When a
match is found, he reverses the hash to the original word
which is known to him, and he finds the password [21]. Brute-
force and dictionary attacks can be further improved using a
rainbow-table attack in which the attacker prepares a list of
pre-computed hashes [21]. Figure 2 shows a simplified
illustration of the attack.

In our exercise, we used the Windows Server 2008
because it stores passwords as hash values only. It stores
passwords using NT hash (which uses the MD4 hash
algorithm) on the local disk in the Security Account Manager
(SAM) file [22]. The previously described attacks can be
easily launched if a user chooses a weak password and the
attacker has access to the SAM file (further details in the
attack scenario). Fortunately for attackers, by default,
Windows systems (and may be other systems) allow users to
create Administrators accounts with weak passwords or even
with no passwords at all. The attack will be explained further in
the following sub-sections (in which we address “what can go
wrong”).

Pre-computed hashes list

HASH Value Word

LPQWEC… love

GPQWER… hello

ASZXFKM… apple

Fig. 2 A simplified illustration for how a dictionary attack works. The rainbow
table is improved technique.

SAM File

HASH #1: VBNSXZ…

HASH #2: LPQWEC…

The attacker gains access to

SAM file
 1

The attacker

prepares a list

of pre-

computed

hashes for

dictionary

words or

password

guesses

 3

 4
In this example, the

password is: love

The attacker compares the

hashes of the SAM file to

his pre-computed list. If a

match is found, the attacker

reverses the hash to the

word

 2

Attacker Admin#2Admin#1

2) The exercise’s initial scenario
The initial state of the competition is as follows: we have

two systems administrators: Attacker1 and Attacker2,
who share one Windows Server 2008 machine. Each
administrator is a member of the Windows “Administrators”
group which grants the administrator account full control over
the system. Presumably, each administrator has his own
Windows profile configured with the appropriate file
permissions that protect his profile from being accessed by
anyone other than himself. This scenario is realistic and can be
found in some organizations where two employees share the
same physical machine. It does not need to be a server; the
same principle applies to desktop machines.

3) What can go wrong?
Since the passwords of Windows Server 2008 are stored

only as hash values in the SAM file (i.e., they are not salted
hashes), this makes the weak passwords (such as dictionary
word passwords) prone to the rainbow-table attack. A
dishonest administrator who has legitimate access to the system
can exploit this fact and perform this attack on the stored
hashes to retrieve other administrators’ passwords (if they are
weak). With the use of some free online tools, the victim’s
administrator(s) passwords can be found in a matter of seconds.

For simplicity, in this exercise, we assumed that the
attacker is an internal attacker (i.e., a dishonest administrator
who has an account in the system). However, similar attacks
that exploit the password hashes can still be performed without
the existence of an account for the attacker; all that’s necessary
is physical access to boot the machine from a Linux Live CD
as shown in Computer Security Lab Session: Password
Cracking by V. Giotsas [19].

Once the password is in the wrong hands, the entire
security of the system is broken (i.e. confidentiality, integrity,
and authenticity). As a result, the attacker can perform several
types of attacks, including but not limited to the following:

 Masquerading attack: in which the attacker fakes his
identity to perform operations under the name of the
legitimate administrator.

 Denial of service attack: in which the attacker denies
the legitimate administrator access to the system by, for
example, changing the legitimate administrator’s
password.

 Modification attack: in which the attacker
adds/modifies/deletes data without the legitimate
administrator’s consent or knowledge.

4) The competition design

a) Competition setup: to set up the competition, we

installed the Windows Server 2008 operating system on a

virtual machine. Using virtual machines has several

advantages including providing a secure training environment

in which our exercise attempts are isolated from the actual

machine so that we do not compromise a real system’s

security. In addition, virtual machines provide simplicity: the

exercise required one installation for the operating system, and

then the virtual machine could be copied to the students.

Furthermore, virtual machines provide portability; the virtual

machine can be run on any computer.

In our virtual machine, we created three initial
Administrator accounts with initial passwords. The three
accounts were as follows:

 CPIS312: Administrator account. To be used by both
groups to reset their group’s administrator password.

 Attacker1: Administrator account. To be used by the
first competing group (Group#1).

 Attacker2: Administrator account. To be used by the
second competing group (Group#2).

Before the students begin, they must organize into groups
of up to four students. Each group must find a competitor
group to share the Windows Server machine with.

 Next, we provided a copy of the exercise’s virtual machine
to every pair of competing groups to be used in this exercise.
At the beginning of the exercise, every pair of competing
groups must set up their shared machine together. Each group
must decide which Administrator account represents them
(either Attacker1 or Attacker2). Then, each group secretly
chooses a password for their Administrator and resets the initial
password to the password they chose. The password must be a
weak password: a lower case dictionary word with maximum
length of 6 characters. The chosen password must remain
secret and must not be given to anyone outside the group
(except the instructor).

 After each group set their Administrator password, they
were required to fill out a form for the instructor that included
their chosen password (as shown in Figure 3).

In the next stage, each group took a copy of the virtual
machine (that they had configured with their competitor) and
starting from this stage the two groups work separately. Each
group tried to break their competitor’s password first. Hence,
each group played two roles: the attacker and the victim roles.

b) The software and hardware needed: in order to

perform the attack, we needed the following software:

 VMware workstation: a commercial software to create
virtual machines and host various operating systems
[23]. We are considering using free alternative software
in the future.

 The ISO files for Windows Server 2008: can be
obtained from either the trial version or from other free
sources for educational purposes such as Microsoft
DreamSpark [24]

 Ophcrack: free software by which we can load rainbow-
tables to break passwords [25]

 The rainbow tables for all lowercase words: there are
various tables but we used this for our exercise. It is free
and available at [26].

 Cain & Abel: free software that allowed us to extract
the hashes from the SAM file [27].

 In terms of hardware, the students used their ordinary
laptops to host the virtual machine and implement the attack.

c) The attacker’s goal (winning the competition): a

successful attack results in recovering the competitor’s

administrator account password in plain text as shown in

Figure 4 below.

5) Defenses against dictionary and rainbow-table attacks
To defend systems against brute-force, dictionary, and

rainbow-table attacks, systems should employ salted hashes,
i.e., passwords that are combined with other random values
unknown to the attacker. The system uses these combinations
to compute the hashes [21]. This makes it infeasible for the
attacker to prepare a pre-computed list of hashes [21].

Most importantly, users must be educated to never create
an account with empty or weak passwords. Users’ passwords
must meet complexity requirements [28] [29]. Password
strength is based on two factors: the length and the character
set. The longer the password and the larger the character set
from which it is drawn, the more resistant to guessing and
brute-force attacks. Passwords must not contain personal
information that can be easily guessed; must not be dictionary
words; and must contain at least three of the following
categories: upper case letters; lower case letters; numbers (0-
9); special characters; Unicode characters [28] [29].

B. Exercise 2: Breaking WEP Wireless Network Password

1) An overview of the attack

Wired Equivalent Privacy (WEP) is a security protocol
introduced in 1997 as an IEEE standard [30]. It aimed to
provide the security equivalent of the wired network, in
particular [31]:

 Confidentiality: to protect against eavesdropping

 Authentication: to prevent unauthorized access

 Integrity: to prevent data modification

Fig. 3 The secret form submitted to the instructor by each group prior to
performing the attack.

Fig. 4 Screen shot of the Ophcrack output showing the password “great” in

plain text after it was cracked.

However, this protocol was shown to have serious design
flaws and was officially deprecated in 2004 by IEEE. One of
the main problems with this protocol was in the key
generation process. WEP is designed to encrypt/decrypt data
using a stream cipher. In stream ciphers, the cipher text is
generated simply by XORing the plain text with a pseudo-
random key stream. The decryption process works in reverse,
by XORing the cipher with the same pseudo-random key
stream. WEP protocol employs the RC4 stream cipher that
uses the WEP key to generate the pseudo-random infinite key
stream [31].

In stream ciphers, the same key must never be used twice
[31]. It must be randomized. However, WEP is designed with
a 64-bit key consisting of a 40-bit shared key concatenated
with a 24-bit initialization vector (IV) [31]. There is another
version of WEP that uses a 128-bit key that consists of a 104-
bit shared key concatenated with a 24-bit IV. However, even
the long-key version of WEP suffered from the same problems
as the 64-bit version. We will use the 64-bit version in our
exercise. Normally, in WEP, the 40-bit shared key is fixed and
rarely changed, therefore, the key stream randomization relies
only on the 24-bit IV value [31]. Due to the insufficient length
of the IV, the key stream will definitely be repeated after at

most 2^24 16 Million different IVs are generated (i.e.,
frames) [31]. Even worse, the IV is sent in clear text, which
helps the attacker know when the IV is repeated [31].

Due to the above design flaws, several attacks were
possible. One of the attacks is the “two-time pad” attack,
which occurs when two ciphers get encrypted with the same

key [31]. To illustrate, since C=PK (where C is the cipher
text, P is the plain text, and K is the Key), when the key is
reused, XORing two ciphers will give the result of XORing

the two plain texts, i.e. C1C2=P1P2 [31]. When the

attacker obtains P1P2, this gives him clues about the plain
text which may allow him to obtain the plain text [31].
Normally, knowing the XOR of two plain texts is enough to
recover both of the texts [31]. Another attack called “related-
key” attack, which resulted from the fact that they keys are
related to each other (fixed shared 40-bits and the 24-bit IV
increments sequentially), can allow the attacker to extract the
secret key (WEP key) by collecting and analyzing enough IVs

(1 Million frames) [32]. This attack was first described by
Fluhrer et al. in 2001 and known as the Fluhrer, Mantin, and
Shamir (FMS) attack [33]. In 2007, the attack was improved
by Tews et al. Their approach, which is known as Pyshkin,
Tews, Weinmann (PTW), has reduced the number of needed
IVs and hence the time to break the key [34]. The PTW
method is the default method used in the free tool “Aircrack-
ng” which we used in our exercise [35].

2) The exercise’s initial scenario
The initial scenario is that there is a wireless AP

configured with the flawed WEP protocol. The WEP password
is secret and not known to the network users (i.e., the
students). WEP is still found and provided in most of the APs
and routers probably for backward compatibility. Therefore,
un-aware end users may choose this broken protocol while
configuring the security settings of their device.
Unfortunately, this scenario still occurs in real-life cases.

HIGHLY CONFIDENTIAL. FOR THE INSTRUCTOR ONLY.

 TEAM NAME:

 TEAM LEADER:

 ADMIN USER NAME:

 ADMIN PASSWORD:

The

Password

Cracked!

3) What can go wrong?

Since anyone can easily discover the security protocol
used in an AP either through the client’s network settings or
by using some network scanning tools, an attacker can target a
WEP network. The result will allow him to retrieve the secret
key. This permits him to perform different types of attacks
including denial of service and traffic decryption to reveal
encrypted data.

Breaking the WEP key can be done by an amateur in a
matter of seconds using free tools available online.

4) The competition design

a) Competition setup: we connected a wireless AP.

Then, we configured the AP with:

 Service Set Identification (SSID) (i.e., network name).
We used: CPIS312 as a network name.

 Security protocol. We selected the following password:
“group” as the WEP key. We used a WEP 64-bit key.

Next, we provided the students with the network name. The
password was kept secret and known only to the lab instructor.
We ran two Aps, each one placed on a separate floor. The
students were allowed one week to exercise and submit the
answer (the key). In this competition, all student groups were
playing the attacker role, competing with the instructor (the
victim and the network owner).

b) The software and hardware needed: in order to

perform the attack, we needed the following software:

 Kali ISO image: Kali is a Linux distribution designed
for penetration testing. It contains several penetration
software including “Aircrack-ng” which we used for
cracking the WEP network [36].

In terms of hardware, we needed:

 A wireless AP: any off-the-shelf AP that supports WEP
protocol can serve the purpose.

 Wireless cards that are capable of packet injection. We
used an Alfa wireless adapter [37].

 An ordinary laptop to host the virtual machine of Kali
system.

c) The attacker’s goal (to win the competition): a
successful attack should extract the WEP key in plain text as
shown in Figure 5.

Fig.5 Screenshot of the Aircrack-ng showing the password “excel” in plain

text after it was cracked.

5) Defenses against a WEP attack
To defend against this attack, network administrators for

home or enterprise networks must never use a WEP protocol
to secure their networks. Instead, they should use improved
protocols such as WPA2, which has resolved the problems in
WEP. However, even when WPA2 protocols are used,
attention must be paid to the password strength in order to
defend against dictionary attacks [38].

IV. EVALUATIONS OF THE EXERCISES

In order to evaluate the exercises from the student’s
perspective, we conducted a survey.

A. Sample

Our sample consisted of 46 undergraduate female students,
who represent all the students officially enrolled in the CIS
course in the IS department in the second semester of the
2013/2014 academic year. The students’ ages ranged from 20-
24 years.

B. Methodology

At the end of the semester, after we finished all the lab
exercises, we distributed an anonymous paper-based survey to
the subjects. All the students returned the survey. Originally,
47 surveys were returned to us, due to one additional student
who mistakenly joined and filled out the survey while she was
not enrolled in the course (the student informed us that she did
not complete the survey). Because the surveys were
anonymous, we could not recognize her survey and, therefore,
decided to exclude the most incomplete survey, which
presumably belonged to this student.

We ended up with 46 filled surveys, two of which did not
have all questions answered. However, we believe this does
not affect the accuracy of the results, as we computed a
weighted average and the results tables below show the total
number of answers received for every particular question.

We used a 5-point Likert scale for this survey, with
questions that measured the students’ opinions. The survey
included one yes/no question and two multiple choice
questions. In addition, it included a section for evaluating the
instructor (We did not include that section in this paper as it is
beyond the scope of the paper). Table 1 in the Appendices
section summarizes the survey questions and the answers
provided.

C. Results and Discussion

In this section, we summarize our results. In the summary,

for brevity, when we say “Agree” we refer to both “Strongly

Agree” and “Agree”; the same is true for “Disagree.” Detailed

statistics can be found in the tables below.

The results indicate that 84.78% of the students agree that
the lab exercise increased their knowledge regarding
information security. The results also suggest that the exercises
helped students better understand the theoretical concepts
covered in the lectures, as 86.96% agreed with this assessment.
In addition, 65.22% of the students believed that it would be
difficult for them to understand how attackers think without
practicing offensive security lab exercises.

The WEP key

The competitive-based exercise design appeared to be
successful in motivating and stimulating the students, as
69.57% agreed with this assessment. In addition, 64.44%
agreed that the exercises augmented the positive competitive
spirit between the teams and 78.26% agreed that working on
competitive-based exercises was enjoyable. Furthermore,
76.09% recommend competition-based offensive exercises to
future students. In general, 65.22% of the students agreed that
the offensive lab exercises met their expectations and 60.87%
wished that there were more offensive security lab exercises
given during the lab sessions throughout the semester. In
addition, 50% wish that more grades were allocated to the
offensive security lab exercises.

In terms of the difficulty of the exercises, we found that
58.70% assessed the level as “just right,” 23.91% found them
“easy” or ”very easy,” while 17.39% believed that the exercises
were “difficult” or ”very difficult.” As for the amount of time
provided to practice the exercises and to submit the answers,
45.65% agreed that the time provided to complete the offensive
exercises was adequate, 39.13% felt neutral about the amount
of time, and 15.22% disagreed that the time provided was
adequate. For the live demo exercise, which was a sort of
examination of breaking the WPA wireless network live in
front of the lab lecturer in about 1.5 hour time, 65.22% agreed
that the amount of time provided was adequate, 13.04%
disagreed, and 21.74% felt neutral about the amount of time
provided.

V. CONCLUSION

In this paper, we presented the competitive-based hacking
exercises that we designed and delivered to undergraduate
students taking the CIS course. We described the set-up of
each exercise and the way in which we designed the small
competitions.

We evaluated the experiment from the student’s
perspective. The survey results showed a positive attitude
toward these types of exercises. The majority of the students
found them to be informative, competitive, and enjoyable, and
they recommend these exercises to future students.

This is our first attempt at conducting such in-class
competitions. We look forward to increasing the number of
these exercises and to specifying monetary rewards for
winners. We will also consider giving the students more time.
In addition, we plan to share the results of our experiment with
the curricular committee at FCIT-KAU to use as an example
and to argue the need for generalizing competitive-based
exercises in CIS courses for the other departments in the
college.

VI. REFERENCES

[1] B. Schneier (2008, Mar. 25). Schneier on Security: The Security
Mindset [Online]. Available:

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.

htm [Accessed: Sep. 9, 2014].

[2] A. Philipson (2013, Sep. 11). Can you crack the code? GCHQ
unveils fiendish puzzle for new recruits [Online]. Available:

http://www.telegraph.co.uk/news/uknews/defence/10301435/Can-

you-crack-the-code-GCHQ-unveils-fiendish-puzzle-for-new-
recruits.html [Accessed: Sep. 5, 2014].

[3] Mozilla (2013, MAy 22). Mozilla Security Bug Bounty Program

[Online]. Available: https://www.mozilla.org/security/bug-

bounty.html [Accessed: Sep. 8, 2014].

[4] The BlueHat team (2014). Microsoft Bounty Programs [Online].

Available: http://technet.microsoft.com/en-us/security/dn425036

[Accessed: Sep. 8, 2014]

[5] Google. Program Rules- Application Security - Google [Online].

Available: http://www.google.com/about/appsecurity/reward-

program/ [Accessed: Sep. 8, 2014].

[6] Facebook (2014). Information [Oline]. Available:

https://www.facebook.com/whitehat/ [Accessed: Sep. 8, 2014].

[7] HackerOne. HackerOne - Twitter [Online]. Available:

https://hackerone.com/twitter [Accessed: Sep. 8, 2014].

[8] Facebook (2013, Apr. 3). Bug Bounty Highlights and Updates

[Online]. Available: https://www.facebook.com/notes/facebook-bug-
bounty/bug-bounty-highlights-and-updates/818902394790655

[Accessed: Sep. 29, 2014].

[9] Facebook (2013, Aug. 2). An update on our Bug Bounty Program

[Online]. Available: https://www.facebook.com/notes/facebook-

security/an-update-on-our-bug-bounty-
program/10151508163265766# [Accessed: Sep. 29, 2014].

[10] Caseyjohnellis (2014, Feb. 5). Interview: Reginaldo Silva – Largest

Facebook bug bounty awarded researcher [Online]. Available:

https://blog.bugcrowd.com/reginaldo-silva-facebook-bug-bounty-

awarded-researcher/ [Accessed: Sep. 8, 2014].

[11] Microsoft (2014). Security Researcher Acknowledgments for
Microsoft Online Services - Previous Months [Online]. Available:

http://technet.microsoft.com/en-us/security/cc308575 [Accessed:

Nov. 17, 2014].

[12] M. Chen (2014, Apr. 7). 5-year-old Ocean Beach boy exposes

Microsoft Xbox vulnerability [Online]. Available:
http://www.10news.com/news/5-year-old-ocean-beach-exposes-

microsoft-xbox-vulnerability [Accessed: Nov. 17, 2014].

[13] D. Gross (2013, Aug. 20). Zuckerberg's Facebook page hacked to

prove security flaw [Online]. Available:

http://edition.cnn.com/2013/08/19/tech/social-media/zuckerberg-
facebook-hack/ [Accessed: Nov. 17, 2014].

[14] E. Alashwali, “Incorporating hacking projects in computer and

information security education: an empirical study,” Int. J. Electronic

Security and Digital Forensics, vol. 6, no. 3, pp. 185–203, 2014.

[15] The UCSB iCTF [Online]. Available: http://ictf.cs.ucsb.edu/#/

[Accessed: Nov. 1, 2014].

[16] C. Lee, A. Uluagac, K. Fairbanks, and J. Copeland, "The Design of

NetSecLab: A Small Competition-Based Network Security Lab,"

IEEE Transactions on Educ., vol. 54, no. 1, pp. 149-155 Feb. 2011.

[17] Cyber Security Challenge (2014). Universally Challenged [Online].

Available: http://cybersecuritychallenge.org.uk/universally-
challenged/ [Accessed: Nov. 14, 2014].

[18] Cyber Security Challenge (2014). Universally-Challenged-

Description-2014-2015-1 [Online]. Available:

https://cybersecuritychallenge.org.uk/wp-

content/uploads/2014/08/Universally-Challenged-Description-2014-
2015-1.pdf [Accessed: Nov. 1, 2014].

[19] V. Giotsas (2011). "COMPUTER SECURITY LAB SESSION :

Password Cracking," University College London (UCL),

unpublished.

[20] V. Giotsas (2011). "COMPUTER SECURIYT LAB SESSION 5:

Wireless Password Cracking," University College London (UCL),

unpublished.

[21] J. Ullrich (2011, Jun. 28). Hashing Passwords [Online]. Available:

http://www.dshield.org/diary/Hashing+Passwords/11110 [Accessed:

Nov. 11, 2014].

[22] Microsoft (2013, Sep. 12). Cached and Stored Credentials Technical

Overview [Online]. Available: http://technet.microsoft.com/en-

us/library/hh994565.aspx [Accessed: Nov. 11, 2014].

[23] Vmware (2014). Vmware Workstation [Online]. Available:

http://www.vmware.com/products/workstation [Accessed: September
01, 2014].

[24] Microsoft (2014). Microsoft DreamSpark - Software Catalog

[Online]. Available: https://www.dreamspark.com/student/software-

catalog.aspx [Accessed: Nov. 15, 2014].

[25] Ophcrack (2014). Ophcrack [Online]. Available:

http://ophcrack.sourceforge.net/ [Accessed: Nov. 21, 2014].

[26] Sourceforge (2014), Browse /tables/Vista free at Sourceforge.net

[Online]. Available:

http://sourceforge.net/projects/ophcrack/files/tables/Vista%20free/
[Accessed: 02 June 2014].

[27] Oxid.it (2014. Cain & Abel [Online]. Available:

http://www.oxid.it/cain.html [Accessed: Nov. 21, 2014].

[28] Microsoft (2014). Password Strength - Password Strength Calculator

and Password Checker [Online]. Available:

https://www.microsoft.com/security/pc-security/password-
checker.aspx [Accessed: Nov. 16, 2014].

[29] US-CERT (2014, Feb. 6). Choosing and Protecting Passwords

[Online]. Available: https://www.us-cert.gov/ncas/tips/ST04-002

[Accessed: Nov. 16, 2014].

[30] IEEE Standard for Information Technology- Telecommunications

and Information Exchange Between Systems-Local and Metropolitan

Area Networks-Specific Requirements-Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY)

Specifications," IEEE Std 802.11-1997, pp. 1- 445, 1997.

[31] I. Goldberg, N. Borisov, D. Wagner (2001, Jul. 1). The Insecurity of

802.11 An analysis of the Wired Equivalent Privacy protocol

[Online]. Available:

http://www.cypherpunks.ca/bh2001/mgp00001.html [Accessed: Nov.
12, 2014].

[32] D. Boneh (2014). Attacks on stream ciphers and the one time pad.

coursera.com [Online]. Available: https://class.coursera.org/crypto-

010/lecture/6 [Accessed: Nov. 14, 2014].

[33] S. Fluhrer, I. Mantin and A. Shamir. "Weaknesses in the Key

Scheduling Algorithm of RC4," in Revised Papers from the 8th

Annual International Workshop on Selected Areas in Cryptography
(SAC'01), Serge Vaudenay and Amr M. Youssef (Eds.). London,

UK, 2001, pp. 1-24.

[34] E. Tews, R.-P. Weinmann, and A. Pyshkin. "Breaking 104 bit wep

in less than 60 seconds," in Proceedings of the 8th international

conference on Information security applications (WISA'07), Berlin,
Heidelberg, 2007, pp. 188-202.

[35] Darkaudax (2013, Feb. 3). aircrack-ng [Online]. Available:

http://www.aircrack-ng.org/doku.php?id=aircrack-ng [Accessed:

Nov. 14, 2014].

[36] Offensive Security Ltd. (2014). Kali Linux [Online]. Available:

http://www.kali.org/ [Accessed: Sep. 4, 2014].

[37] ALFA NETWORK Inc. (2011). 802.11b/g/n Long-Rang USB

Adapter [Online]. Available:
http://www.alfa.com.tw/product_category.php?pc=3 [Accessed: Sep.

4, 2014].

[38] Mister_x (2010, Mar. 7). Tutorial: How to Crack WPA/WPA2

[Online]. Available: http://www.aircrack-

ng.org/doku.php?id=cracking_wpa [Accessed: Nov. 17, 2014]

TABLE I. OUR SURVEY RESULTS (1)

Q.

No.
Question

Answers

Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

Total

Answers

1

The offensive security lab exercises increased my knowledge about
information security

21
(45.65%)

18
(39.13%)

6
(13.04%)

0
(0.00%)

1
(2.17%)

46

2

The offensive security lab exercises helped me better understand the

theoretical concepts covered in the lectures

14

(30.43%)

26

(56.52%)

5

(10.87%)

0

(0.00%)

1

(2.17%)
46

3

It will be difficult for me to understand how attackers think without

practicing the offensive security lab exercises

15

(32.61%)

15

(32.61%)

11

(23.91%)

5

(10.87%)

0

(0.00%)
46

4

Working on competition-based (i.e. against another student group or
against the instructor) offensive security lab exercises was motivating

and stimulating

18

(39.13%)

14

(30.43%)

13

(28.26%)

0

(0.00%)

1

(2.17%)
46

5

Working on competition-based offensive security lab exercises

augmented the positive competitive spirit between the groups

18

(40.00%)

11

(24.44%)

15

(33.33%)

0

(0.00%)

1

(2.22%)
45

6

Working on offensive security lab exercises in competition-based

method was enjoyable

17

(36.96%)

19

(41.30%)

7

(15.22%)

2

(4.35%)

1

(2.17%)
46

7

I recommend teaching the offensive security lab exercises in a
competition-based method to future students

16
(34.78%)

19
(41.30%)

7
(15.22%)

2
(4.35%)

2
(4.35%)

46

8

The time provided to practice the offensive security lab exercises was

adequate

8

(17.39%)

13

(28.26%)

18

(39.13%)

7

(15.22%)

0

(0.00%)
46

9

The time provided to accomplish the “Live Demo” lab objectives was

adequate

11

(23.91%)

19

(41.30%)

10

(21.74%)

4

(8.70%)

2

(4.35%)
46

10

The number of students per group was adequate

19

(42.22%)

18

(40.00%)

6

(13.33%)

2

(4.44%)

0

(0.00%)
45

11

The offensive security lab exercises met my expectations

10
(21.74%)

20
(43.48%)

14
(30.43%)

1
(2.17%)

1
(2.17%)

46

12

I wish there were more offensive security lab exercises given in the lab

14
(30.43%)

14
(30.43%)

10
(21.74%)

7
(15.22%)

1
(2.17%)

46

13

I wish there were more grades allocated to the offensive security lab

exercises (currently 8 grades)

10

(21.74%)

13

(28.26%)

14

(30.43%)

9

(19.57%)

0

(0.00%)
46

VII. APPENDICES

TABLE I. THE LEVEL OF EXERCISES DIFFICULTY FROM STUDENTS PERSPECTIVE

Q.

No.
Question

Strongly Agree

Very

Difficult
Difficult Just Right Easy

Very

Easy

Total

Answers

14

The level of difficulty of the offensive security lab exercises was
adequate

1
(2.17%)

7
(15.22%)

27
(58.70%)

8
(17.39%)

3
(6.52%)

46

