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Abstract—This paper examines the security of real-life 

Internet servers using the most popular Secure Socket Layer 

(SSL) protocol to ensure secure connections. We concentrate on 

Rivest-Shamir-Adleman (RSA) public-key vulnerabilities which 

result from the initial settings of web servers. We look at the 

question of breaking individual RSA keys. The possibility of 

factoring RSA keys used by real web servers on the Internet has 

been a disturbing discovery which received a lot of press in the 

recent months. We have conducted an Internet scan with a 

particular focus on commercial websites (.com and .co domains). 

We have created a database containing over 3 million certificate 

chains together with detailed information about each website, its 

security settings, geographic location and other relevant data. 

This allowed us to see how different key sizes are adopted, how 

many servers are using weak keys and which countries are 

quicker to adopt secure keys. We attempted to factor all keys we 

were able to collect from our scan and from another public 

database. The method to achieve this seemed trivial at first, but it 

can only be done efficiently by using a special algorithm 

proposed by Bernstein. We ran the computation based on an 

open implementation of Bernstein’s algorithm. We have been 

able to factor few thousands keys. The infected servers we 

inspected appear as Embedded Web Servers (EWS). Although 

we have not yet found any immediate threats to e-commerce 

websites, the risks that such vulnerable servers present should 

not be underestimated as they can be exploited to perform 

different types of attacks, including Denial of Service (DoS), 

corporate espionage and firmware modification.   

Keywords— public key; cryptography; encryption; information 

security. 

I. INTRODUCTION 

A. Our Motivation: How Secure Is the Internet? 

The Internet has become an integral part of everyone’s 
daily life. It has been reported that, as of September 2009, 
25.6% of the world’s population uses the Internet [1], and 
usage is rapidly increasing. Between 2000 and 2009 alone, 
Internet usage increased by 380% [1]. The number of 
registered domain names is also rapidly increasing. In the third 
quarter of 2012, VeriSign has reported that .com domain names 
have exceeded 100 million [2].   

With the growing number of users and the value of the data 
being transferred over the Internet, the number of threats and 
attacks has also increased. Therefore, Internet security has 
become essential. When clients make an online transaction, 
they require a secure connection that ensures that their data are 

not intercepted; that they are connecting to the genuine 
website; and finally, that their data are not tampered with [3]. 
These requirements can respectively be restated as 
confidentiality, authenticity and integrity. 

Today, Secure Socket Layer/Transport Layer Security 
(SSL/TLS) is one of the most important network security 
protocols used to secure the Internet. It is designed precisely to 
address the aforementioned concerns [3]. SSL provides 
confidentiality, authenticity and integrity by employing 
encryption, digital signatures and hash functions.  

However, SSL is only a communication protocol, and it has 
several limitations [3]. One of the limitations is that it relies on 
different cryptographic algorithms to provide security services 
[3]. As a result, SSL is only as strong as the cryptographic 
algorithms it employs [3]. For example, SSL can not secure a 
transaction that uses the broken DES algorithm. Another 
limitation arises from the implementation of SSL [3]. For 
instance, if the key size is not sufficient, or if the system’s 
Random Number Generator (RNG) is faulty, SSL provides no 
security. 

Recent studies by Lenstra et al. [4], and Heninger et al. [5] 
have revealed alarming findings about factorable keys used in 
SSL servers. Heninger et al. [5] concluded that the root cause 
of such vulnerable keys is not a cryptographic issue, but rather 
an improper implementation [5].   

It is thus very important for security researchers to 
continuously evaluate the real-world implementation of any 
security protocol. Such evaluations help by spotting 
weaknesses and providing solutions and recommendations. 
Toward this end, this paper aims to shed light on the 
importance of proper implementation for SSL protocol. We 
aim to raise awareness about the recently discovered 
prevalence of factorable RSA keys on the Internet by [4] and 
[5].  

The rest of the paper is organized as follows: In section 2, 
we provide background on the SSL/TLS

1
 protocol and RSA 

cryptosystem. In section 3, we summarize some major studies 
related to our topic. In section 4, we briefly describe our 
methodology. Section 5 presents and discusses our results. 
Section 6 outlines the limitations of our study, while section 7 
provides a defensive solution. We conclude in section 8. 

 

1For brevity, we will use the term SSL to refer to either SSL or TLS. 



II. BACKGROUND 

A. SSL, an Overview 

SSL is a network security protocol that was originally 
developed by Netscape in 1994 [3]. In 1996, the responsibility 
of developing SSL was passed on to the Internet Engineering 
Task force (IETF) [3]. IETF released TLSv1 that was based on 
SSLv3 [3]. SSL is used to secure Hypertext Transfer Protocol 
(HTTP) in order to provide HTTP over SSL (HTTPS). 

SSL has two main stages and is divided into two sub-
protocols: the SSL Handshake Protocol and the SSL Record 
Protocol [6]. The SSL Handshake Protocol is responsible for 
negotiating the ciphersuite (cryptographic algorithms and key 
lengths) options between the client and the server and allows 
one or both parties to authenticate the other [6]. The main 
stages of a typical handshake protocol can be described as 
follows [3]: First, the client sends a ClientHello message to 
request the server to begin SSL negotiation. The message 
includes a list of ciphersuites proposed by the client. Second, 
the server responds with a ServerHello message. In this 
message, the server decides which ciphersuite will be used 
during the communication. Third, in order for the server to 
authenticate its identity, it sends a Certificate message, which 
contains its public-key information. Fourth, the server sends a 
ServerHelloDone message to confirm to the client that it has 
finished its part of the negotiation (the ServerHello phase). 
Then the server waits for the client response. Fifth, the client 
sends a ClientKeyExchange message. It contains the symmetric 
key information that both parties are going to use. Sixth, the 
client sends a Finished message to the server to inform it that 
the negotiation process has been completed successfully. 
Finally, similar to the previous step, the server sends a Finished 
message to the client for the same purpose.   

B. RSA Cryptosystem 

RSA is one of the earliest known public-key cryptosystems, 
invented in the 1970s [7]. RSA allows two major types of 
applications: encryption and digital signature [7]. 

1) RSA Setup: In order to encrypt or sign with RSA, the 

message recipient or the signer of the outgoing message needs 

to set up his RSA private-key. This is done once for all 

messages and must be done prior to any actual communication 

using RSA. The keys are set up as follows. First, compute N 

(the modulus), which is a product of two large prime numbers, 

p and q, such that [7]: 
N = p × q (1) 

These two primes are randomly chosen [7]. Second, one needs 
to choose an encryption exponent e, which has to be relatively 
prime to both (p−1) and (q−1) [8]. This means that:  

GCD (e, (p−1) × (q−1)) = 1 (2) 
Finally, one can compute another exponent, called the 
decryption exponent d, from the previous values of p, q, and e, 
such that:  

d = e
-1

 mod (p−1) × (q−1) (3) 
These three numbers, p, q, and d, must remain confidential at 
all times. The RSA private key or decryption key is the pair (d, 
N) [7] [8]. The user publishes the modulus N and the public 
exponent e [7] [8]. Hence, the public key  or the encryption key 
is the pair (e, N) [7] [8]. For more details about RSA 
cryptosystem and RSA key generation, refer to [7] [8]. 

2) RSA in SSL: In SSL, RSA is used in one of two cases 

[5]: 

 If the key-exchange protocol is RSA: RSA is used to 
encrypt a session key chosen by the client. 

 If the key exchange is Diffie-Hellman (DH): RSA can 
be used to provide a digital signature in order to 
authenticate messages exchanged during the DH key 
agreement process.  

RSA has been the most widely used key exchange protocol 
for so many years. Also, it is the dominant signature scheme 
used to authenticate DH key-exchange messages. In 2006, Lee 
et al. examined over 19,000 SSL servers and showed that 
99.86% of the servers support RSA key exchange protocol 
compared to 57.57% of the servers supporting DH protocol 
with RSA signature, while only 0.02% support DH with 
Digital Signature Standard (DSS) [9]. In 2011, Holz et al. 
measured the chosen ciphersuites from real SSL sessions in 
two different runs. In General, the results show that of the top 
10 ciphersuites chosen by the servers, DH key-exchange with 
RSA signature appeared only in 3 ciphers, chosen by less than 
30% of the servers [10]. On the other hand, RSA key-exchange 
is used in the rest of the top 10 chosen ciphersuites, 
representing the majority [10]. The principal role that RSA 
plays in SSL has motivated our choice in this paper to 
concentrate on RSA-key vulnerabilities in SSL servers. 

III. RELATED WORK 

In 2012, Lenstra et al. conducted a study that questioned 
the validity of the assumption that distinct random numbers are 
generated for every key [4]. In their dataset that contained 6.38 
million distinct RSA moduli, they could factor 12,934 of them 
(0.2% of the total) [4]. They concluded that keys generated 
using “single-secret” algorithms based on DH  such as ECDSA 
and ElGamal are more secure than keys generated using 
“multiple-secret” algorithms such as in RSA [4].  

Concurrent with the previous study, Heninger et al. 
conducted the largest ever Internet scan on the public IPv4 
address space for hosts listening on ports 443 and 22 (SSL and 
SSH hosts) [5]. They factored 16,717 distinct moduli affecting 
64,081 SSL hosts (0.50% of the SSL hosts in their scan) [5]. 
They did a comprehensive analysis to identify the problem and 
concluded that the main reason for widespread factorable keys 
is low entropy due to faulty implementation, not a 
cryptographic issue as Lenstra et al. concluded [5].  

IV. METHODOLOGY 

Our methodology can be described in four main steps: first, 
we built a list of domain names. Since our target is commercial 
servers, we looked for domain names that end with .com.* and 
.co.* Top Level Domains (TLDs) where the * refers to the 
country code (cc) if applicable (for brevity we will use the 
terms .com and .co for the rest of the paper, but our dataset 
includes ccTLDs as well as generic TLDs). We obtained a 
giant domain names list from a public source. At the moment, 
we are reluctant to publish the source to avoid liabilities in 
helping attacks. From this list, we extracted the distinct .com 
and .co domain names without taking any sub-domain names 
(e.g. example.com). Second, we conducted an Internet scan to 
extract SSL certificates. We performed the scan between the 
end of November and the beginning of December 2012. For 



every server in our list, we did the following: we created an 
SSL socket on port 443; initiated a handshake; extracted the 
whole certificate chain; stored each certificate; and finally, 
parsed it to extract its attributes such as the certificate issuer, 
subject, public key etc. Third, we retrieved the geolocation 
information for the servers that successfully completed an SSL 
handshake in the previous step. We achieved this through 
commercial services that maintain IP geolocation databases. 
The principal source was an on-line service provided by [11] 
while a downloadable database from [12] used for locating 63 
IPs that the first provider failed to locate. The accuracy of such 
databases is questionable [13]. However, they can be 
considered accurate at the country level [13] which is the level 
we used in our study. We achieved step 2 and 3 
programmatically using Java programming and MySQL  
relational database (part of step 3 code provided by [11]). We 
employed java multi-threaded programming in order to run 
several tasks simultaneously and collect the data in a 
reasonable time. Fourth, we computed the Greatest Common 
Divisor (GCD) for all distinct moduli pairs we could collect. In 
order to factor RSA keys efficiently, we ran an open source 
implementation for a quasilinear GCD computing algorithm 
based on the Bernstein algorithm [14] and provided by [15]. 
We used an Amazon EC2 instance running Ubuntu12 x86_64 
with 34.2 GB of RAM. We also took research ethics into 
consideration. All the data we used are publicly available. We 
did not publish any affected website addresses, device vendors 
or keys we have factored.  

V. RESULTS AND DISCUSSION 

In this section, we will present and analyze our results. Our 
study is concerned with two issues in RSA keys: key lengths 
and randomness. In our statistics, we used the distinct keys 
only. We use the term SSL-server or simply, server to refer to 
an SSL-enabled distinct domain name.  

A. Our Scan Results in a Nutshell 

From the original domain names set, we extracted 
6,248,784 distinct domain names registered to .com and .co 
TLDs. From those, we found 1,713,388 (27.42% of the original 
.com and .co set) SSL-enabled servers. Of those, 1,713,291 
returned one or more certificate. Only 523,225 IPs were behind 
all of the SSL servers that returned one or more certificate. In 
terms of SSL certificates, our scan collected a total of 
3,543,291 X.509 SSL certificate chains. Of those, there are 
1,713,291 leaf certificates. We found a total of 385,140 distinct 
RSA public keys used in all the certificates we collected 
(99.45% of these keys are in the leaf certificates).  

B. Weak Keys 

An RSA public key consists of the pair (N, e): the modulus 
N and the public exponent e. The key length/size refers to the 
size of the modulus N in bits [16]. It is an important aspect in 
the security of any public-key cryptosystem. The longer the 
key, the more security it provides [16]. On the other hand, 
longer keys result in slower computation [16]. Keys with 
lengths of 512-bit and 768-bit have already been factored by 
academic researchers in 1999 and 2010 respectively [16] [17]. 
Therefore, keys with length ≤ 768-bit should not be used. 
According to the National Institute of Standards and 
Technology (NIST) recommendations, the security strength of 

1024-bit keys (comparable to 80-bit security strength) in 
encryption is “deprecated” (i.e. can be used with possible risk) 

from the year 2011 to 2013 and “disallowed” by 2014 [18]. 
Lenstra’s key-length recommendations which are based on 
mathematical equations suggest that 1024-bit keys can provide 
sufficient security until 2006 [19] and that the minimal key 
length for sufficient security until 2012 should be 1229-bit 
[20]. In August 2012, Microsoft made positive steps toward 
pushing servers’ administrators to select sufficient key lengths. 
Microsoft has released a Windows update that will block 
applications using RSA keys < 1024-bit [21]. For example, 
after the update, Internet Explorer will not open any website 
that offers an RSA certificate with key < 1024-bit [21]. 

Our results show that 0.3% of the keys have lengths 
< 1024-bit, providing inadequate security. Table I summarizes 
our findings of key sizes which may be considered weak in the 
year 2013.  

Weak keys are more dangerous when used in intermediate 
or root certificates since they sign other entities’ keys. In non-
leaf certificates, we found 14 keys ≤ 512-bit affecting 18 
servers, 16 keys < 1024-bit affecting 413 servers and 768 keys 
≤ 1024-bit affecting 135,981 servers.  

C. Key Length Practices and IP Geolocations 

In this section, we want to answer two questions: 1) are 
strong keys adopted in certain countries faster than others? and 
2) are weak keys more frequent in certain countries than 
others? In this section, our definition for weak keys is a lower 
bound. Today, a 512-bit key can be factored by an average 
adversary using typical hardware [5]. Therefore, we define 
weak keys as those with lengths ≤ 512-bit. We also defined 
strong keys as those with lengths ≥ 2048-bit (per NIST’s 
recommendations [20]). To have more reliable statistics, we 
limited our comparisons to the 10 countries which showed the 
highest number of distinct moduli. 
 Our results show that the United Kingdom (UK) is the top 
country in terms of adopting strong keys. In terms of weak 
keys, Italy showed the highest percentage, followed by France, 
while the Netherlands showed the lowest percentage. It is 
worth noting that we recompiled the statistics for keys < 1024-
bit and the countries’ order remained identical to that of keys ≤ 
512-bit except in Germany and Japan, they showed equal 
percentages in keys < 1024-bit (0.23%). Table II summarizes 
our findings. These results could be studied in light of 
government actions to improve cyber security, in particular, 
what various governments’ security services have 
recommended for the industry. For example, the French 
Network and Information Security Agency (FNISA) has set 
2048-bit as a minimal key length since 2010 [20]. However, 
there is no evidence that the industry is following these 
recommendations. 

TABLE I. CUMULATIVE REPRESENTATION FOR WEAK KEYS 

Length 
# and % of Weak Keys and The Affected Leaves 

# keys % keys # affected servers (leaves) 

≤ 512-bit 1,082 0.28% 5,003 

≤ 768-bit 1,126 0.29% 5,532 

< 1024-bit 1,140 0.30% 5,552 

≤ 1024-bit 89,978 23.36% 406,698 



TABLE II. WEAK VS. STRONG KEYS IN THE TOP 10 COUNTRIES 

Country 
Distinct  Keys 

Total # Strong  % Strong  # Weak  % Weak  

US 247,307 196,250 79.35% 582 0.24% 

UK 34,537 27,486 79.58% 89 0.26% 

Germany 16,360 11,590 70.84% 36 0.22% 

Canada 12,100 8,855 73.18% 37 0.31% 

Australia 11,587 9,204 79.43% 35 0.30% 

Japan 10,164 7,802 76.76% 23 0.23% 

France 7,032 4,874 69.31% 50 0.71% 

Netherlands 4,924 3,002 60.97% 6 0.12% 

Spain 3,856 2,763 71.65% 14 0.36% 

Italy 3,048 1,839 60.33% 22 0.72% 

D. Can RSA Keys Be Broken? 

 RSA security is based on the difficulty of factoring [22] [9]. 
To date, nobody has yet been able to factor a 1024-bit modulus 
[5]. The largest modulus that has been shown to be actually 
factored is 768-bit [5] [17]. However, there is a known 
vulnerability that leads to factoring a 1024-bit RSA modulus 
[5]. It can be exploited if an adversary can find a pair of moduli 
that share a prime factor [5]. The recent discovery of the 
widespread factorable RSA moduli on SSL hosts on the 
Internet by [4] and [5] was achieved by exploiting this 
vulnerability.  

1) Computing the Shared Prime Leads to the Private Key: 

The shared prime between two distinct moduli N1 and N2 can 

be found by computing the GCD of the two moduli, i.e. GCD 

(N1, N2) [5]. If the GCD is not equal to 1, this means that both 

moduli share a prime factor p [5]. Therefore, the second prime 

q for both moduli can be computed [5]. This in turn leads to 

computing the private key d for both moduli using equation 3 

in section II  [5]. Figure 1 illustrates the vulnerability. 

2) Computing the GCD Using the Naïve Method: In 

theory, anyone can collect public keys from the Internet and 

factor some of these keys by computing pair-wise GCDs. In 

practice, this is not feasible for large sets. Even with a very fast 

GCD, it is not conceivable for an ordinary adversary to 

compute the GCD for all of the public keys he may be able to 

collect. We analyze the complexity of the computation using a 

similar approach to [5] using our own measurements and 

datasets. In our case, the execution time for a single GCD 

computation in a modern PC with an Intel Xeon 3.4 GHz 

processor and 16-GB RAM, using the GNU Multiple Precision 

(GMP) arithmetic library for two distinct 2048-bit moduli (the 

majority representation of key lengths in our set) took 0.029 

milliseconds (ms). The GCD for a pair of numbers can be 

computed with complexity O(n
2
) for n-bit numbers [5] [23]. 

This would cost O((mn)
2
) to compute all pair-wise GCDs [23]. 

We computed the total time complexity as:  

Complexity = T × ( 
 
) (6) 

where n is the number of distinct keys and T is the execution 
time for computing the GCD of a pair of moduli. Therefore, 
computing pairwise GCDs for our set of 385,140 distinct keys 
would take approximately 26 days (assuming the average key 
length is 2048-bit). We could run the computation for our 
(smaller) set. But since we were looking for more factorable  

 

 

Figure 1. RSA-key vulnerability when two moduli share a prime 

 

keys, we combined our set with the Electronic Frontier 
Foundation (EFF) set [24] and this resulted in a giant set that 
would take around 4.4 years (assuming the average key length 
is 1024-bit). However computing GCDs can be further 
improved considerably. 

3) Computing the GCD Using Efficient GCD: For a more 

efficient method to compute the pair-wise GCD for all pairs of 

distinct moduli, a quasilinear-time algorithm based on 

Bernstein’s algorithm can be employed [5]. The algorithm’s 

description can be found in [5]. The whole Bernstein method 

would cost:  O(nm × (log m) 
2
 × log log m) [5] [23].    

E. Factoring RSA keys 

1) Factorable Keys in Our Dataset: In this section, we 
want to test the hypothesis that the problems detected of 
factorable keys on the Internet could also concern e-commerce 
websites. Therefore, we ran an open source implementation of 
the quasilinear GCD computation [15] on the set of distinct 
moduli which resulted from our scan. We could factor 7 
distinct moduli affecting 7 different SSL servers registered to 
.com and .co domain names. All the 7 factored moduli share 
the same factor. By manual inspection, we found that 6 of the 
factored keys are still in use by the servers as of this writing. 
The affected servers’ web pages have the same design, serving 
as login pages only. There is no information that can confirm 
the devices type, but the HTML code for the login pages 
confirms that the web pages are a user interface administration 
tool. However, after we completed the next experiment (in the 
combined moduli set), we found many affected servers that 
showed the exact web interface and have the word “adsl” 
appears in a sub-domain for Internet Service Provider (ISP) 
domain names. This indicates that the affected web servers we 
found are installed in routers. Such web servers, which are 
built into the devices during the manufacturing and serve as a 
web management interfaces for the devices are known as 
EWSs [25]. We tried to open the web pages for the same 
domain names using plain HTTP protocol and the websites we 
found are as follows: 4 websites belong to companies; 1 
general website; 1 non-English website registered to a 
broadcasting corporate (according to whois online tool [26]). 
The companies’ websites open only with plain HTTP, while 
the HTTPS opens the EWSs login page. In terms of certificate 
details, the moduli were found in expired, self-signed (system-
generated) certificates and issued by the same issuer. The 
validity dates for all the affected certificates show that they 
share the same starting year, day, hour and, with one exception, 

  

  

The Shared Prime 

q1 p q2 

q2 = N2/p q1 = N1/p 

d1 = e
-1 

mod (p-1)×(q1-1) d2 = e
-1 

mod (p-1)×(q2-1) 

GCD ( N1, N2 )  =  p 

 

N1 N2 

 

   

  



minute (the exception differs only by approximately 1 minute). 
We also queried all the distinct certificates (i.e. with distinct 
moduli) that have been issued by the same issuer. We found 27 
certificates with 27 distinct non-vulnerable moduli. Most of 
them share the same validity dates with one or more other 
certificates, with slight differences in minutes. Reference to 
[5], the root cause for the occurrence of such factorable keys is 
insufficient entropy at boot time. From our experiment, we 
conclude that there is no factored moduli belong to e-
commerce websites, and that the affected servers are EWSs 
serving as remote management web interfaces for network 
devices. Our results confirm the findings of [5] which provided 
thorough analysis of the low-entropy problem. However, we 
believe that such vulnerability in embedded devices should not 
be underestimated. Factored keys would allow an adversary 
from decrypting an intercepted traffic coming to the vulnerable 
device. This in turn can result in compromising the 
administrator’s credentials. Once the administrative credentials 
become in the adversary’s hands, he has control of the device 
and this would allow him several types of attacks including 
DoS, corporate espionage, and firmware modification [25].  

2) Factorable Keys in the Combined Set: Because we were 
looking for more factorable keys, we combined our moduli set 
with EFF set. Our set added 291,693 new distinct moduli to the 
EFF set. We repeated the experiment, resulting in a total of 
6,513 distinct factorable keys. Out of these, 5 new distinct 
factorable keys came from our dataset. Table III shows the 
number of factorable keys found in each set along with the 
original set size and the execution time. The big difference in 
the number of factorable keys found in our set compared to the 
combined set can be due to several factors: First, our Internet 
scan was based on domain names while EFF scan was based 
on IP addresses. There is a considerable number of affected 
devices that did not return a domain name when we performed 
rDNS lookup. Second, most of the factored keys appear in 
certificates for sub-domains and seldom in main domain 
names. Our scan included main domain names only. Third, a 
single IP can be behind several domain names. Therefore, 
domain-name-based scans such as ours would require much 
larger input than it in IP-based scans. Finally, EFF scan is 
universal while our scan is for a fraction of domain names. 
However, we chose domain-name-based scanning strategy as it 
would allow us to target specific sector by the TLDs 
(commercial: .com and .co) and directly and accurately identify 
the companies or stores to which the factored key belongs.   

3) Factorable Keys in Non-expired Certificates: In this 

section, we want to determine whether certain keys factored in 

the past (EFF keys have been included in [4] [5] work) are still 

in use today. We limited our inspection to vulnerable moduli 

resulted from the combined set that appear in non-expired 

certificates. As of January 4, 2013, we had found 798 distinct 

vulnerable moduli in non- expired certificates, affecting 6,167 

servers with distinct IPs (the vulnerable moduli were repeated 

among many servers).  Figure 2 illustrates the area we 

inspected. 

  We questioned how many .com, .co and also .edu servers are 

affected by the non-expired vulnerable moduli. Since the EFF 

scan was based on IPs, we had to make a reverse DNS lookup 

(rDNS) to retrieve the domain names for the IPs that showed  

TABLE III. FACTORABLE KEYS 

# 
The Set 

Our Set   
 Our Set +  

EFF Set 
EFF Set 

Distinct Keys 385,140 4,225,058 3,933,365 

Factored Keys 7 6,513 6,508 

Execution time  286.075 sec. 3,381.675 sec. 2,890.326 sec. 

 

 

 Figure 2. Illustration for the area of non-expired vulnerable moduli 
 
factorable keys. 1,109 (17.98%) of the IPs did not return 
domain names. The rDNS lookup returned 268 .com and .co, 
of which 112 servers (41.79%) are available and still using the 
factored keys, 34 servers (12.69%) have changed their keys 
and 122 (45.52%) are not available. We also found a total of 
171 .edu servers, of which 63 (36.84%) still use factored keys, 
49 servers (28.65%) have changed their keys and 59 servers 
(34.50%) are not available. Note that the nature of these 
devices may cause them to be unavailable at all times. 
Therefore, we expect to have found more vulnerable keys if we 
had tested the unavailable devices at other times. Again, all the 
affected web servers that we inspected appear as EWSs 
deployed in a variety of hardware including network printers, 
photocopiers, routers, and IP-based remote power 
management.  

VI. STUDY LIMITATIONS 

In this section, we list some limitations to our study. The 
registration for .com and .co domains is not restricted. 
Therefore, not every .com and .co domain name in our list is 
for a commercial website. In addition, the domain names list 
we used was created in 2009 and is not very recent. From the 
technical side, since our scanning program was built in Java, 
our scan was bounded to Java Security. For example, we could 
not complete SSL handshakes with servers that offered SSLv2 
or servers with key lengths < 512-bit (length = 512 is allowed). 
However, we found means of circumventing retrieving 
untrusted certificates or certificates with invalid hostnames that 
Java does not allow by default [27].  

VII. DEFENSES 

Several solutions have been proposed to warn end users 
about vulnerable keys. “Check Your Key” is an online solution 
developed by [5]. It checks keys against a database of known 
vulnerable keys such as the factored RSA keys in SSL 
certificates which resulted from [5] study. We tested some SSL 
servers that showed factorable keys in our study, the service 
successfully detected them but it shows an error whenever we 
check a server with expired certificate. Although many 
factored keys appear in expired certificates and are still in use 
by web servers, it seems that the service can not report them. 
We have sent an enquiry about this issue to one of the authors 
to confirm this point, but we have not yet received a response. 

Distinct vulnerable moduli in  

non-expired certificates 

 

 
  

Distinct moduli 
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(1,314,339) 
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sets distinct 
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(4,225,058) 

798 



VIII. CONCLUSION  

In response to recent claims by several authors that many 
RSA keys can be factored, with the hypothesis that the 
problems detected for some devices could concern major e-
commerce websites, we decided to proceed with our own 
Internet scan with a particular focus on commercial websites. 
Our study also aimed to determine whether certain keys 
factored in the past are still in use today, and if it is possible for 
an amateur with a single PC using publicly available 
information to break these keys in a reasonable amount of time. 

Our work involved looking at large datasets gathered from 
our scan and one public database. We compiled various 
statistics on key sizes used in various countries. We report that 
servers located in Italy and France showed the highest 
percentage of insecure key sizes, while servers located in the 
UK, US and Australia were leading in adopting secure key 
lengths with 2048-bit or more out of all of the countries in the 
comparison. This indicates that it may be riskier to make 
secure connections with servers located in Italy or France than 
with servers located in the UK and US. However, as this 
depends on many factors, we were unable to verify this. 

We devoted much effort to study individual RSA keys. We 
analyzed the feasibility of factoring some of these keys by the 
naïve pair-wise GCD and also by the efficient algorithm based 
on Bernstein algorithm. We ran the whole attack in order to see 
if there are vulnerable keys. We identified and factored a total 
of 6,513 such keys.  

From our scan, in the keys that we factored and for which 
we traced the web servers, none affected e-commerce websites. 
However, we report factored keys used by corporations but the 
certificates were deployed for EWSs and not for an ordinary 
web server. Further research could focus on exhibiting 
vulnerable live commercial websites by replicating the 
experiment with more recent and larger lists of commercial 
domain names. 

From the combined set of moduli, we inspected the non-
expired vulnerable moduli that appeared in .com, .co and .edu 
servers. On average, we found around 40% of the keys which 
known to be factored in the past are still in use today and some 
affected certificates will not expire until 2038. 

Our results suggest that, even though we have not identified 
a specific live Internet store for which we can crack the keys, 
there is a possibility for anyone who might replicate the same 
experiment to mount attacks on the Internet. This could include 
MITM, DoS, data modification and firmware modification 
attacks. It also seems that it is now possible to impersonate a 
number of embedded devices such as routers or gateway 
servers on the Internet. The exact implications of this for 
national and international security require further investigation. 
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