
Cryptographic Vulnerabilities in Real-Life Web

Servers

Eman Salem Alashwali

College of Computing & IT

King Abdulaziz University

Jeddah, Saudi Arabia

ealashwali@kau.edu.sa

Abstract—This paper examines the security of real-life

Internet servers using the most popular Secure Socket Layer

(SSL) protocol to ensure secure connections. We concentrate on

Rivest-Shamir-Adleman (RSA) public-key vulnerabilities which

result from the initial settings of web servers. We look at the

question of breaking individual RSA keys. The possibility of

factoring RSA keys used by real web servers on the Internet has

been a disturbing discovery which received a lot of press in the

recent months. We have conducted an Internet scan with a

particular focus on commercial websites (.com and .co domains).

We have created a database containing over 3 million certificate

chains together with detailed information about each website, its

security settings, geographic location and other relevant data.

This allowed us to see how different key sizes are adopted, how

many servers are using weak keys and which countries are

quicker to adopt secure keys. We attempted to factor all keys we

were able to collect from our scan and from another public

database. The method to achieve this seemed trivial at first, but it

can only be done efficiently by using a special algorithm

proposed by Bernstein. We ran the computation based on an

open implementation of Bernstein’s algorithm. We have been

able to factor few thousands keys. The infected servers we

inspected appear as Embedded Web Servers (EWS). Although

we have not yet found any immediate threats to e-commerce

websites, the risks that such vulnerable servers present should

not be underestimated as they can be exploited to perform

different types of attacks, including Denial of Service (DoS),

corporate espionage and firmware modification.

Keywords— public key; cryptography; encryption; information

security.

I. INTRODUCTION

A. Our Motivation: How Secure Is the Internet?

The Internet has become an integral part of everyone’s
daily life. It has been reported that, as of September 2009,
25.6% of the world’s population uses the Internet [1], and
usage is rapidly increasing. Between 2000 and 2009 alone,
Internet usage increased by 380% [1]. The number of
registered domain names is also rapidly increasing. In the third
quarter of 2012, VeriSign has reported that .com domain names
have exceeded 100 million [2].

With the growing number of users and the value of the data
being transferred over the Internet, the number of threats and
attacks has also increased. Therefore, Internet security has
become essential. When clients make an online transaction,
they require a secure connection that ensures that their data are

not intercepted; that they are connecting to the genuine
website; and finally, that their data are not tampered with [3].
These requirements can respectively be restated as
confidentiality, authenticity and integrity.

Today, Secure Socket Layer/Transport Layer Security
(SSL/TLS) is one of the most important network security
protocols used to secure the Internet. It is designed precisely to
address the aforementioned concerns [3]. SSL provides
confidentiality, authenticity and integrity by employing
encryption, digital signatures and hash functions.

However, SSL is only a communication protocol, and it has
several limitations [3]. One of the limitations is that it relies on
different cryptographic algorithms to provide security services
[3]. As a result, SSL is only as strong as the cryptographic
algorithms it employs [3]. For example, SSL can not secure a
transaction that uses the broken DES algorithm. Another
limitation arises from the implementation of SSL [3]. For
instance, if the key size is not sufficient, or if the system’s
Random Number Generator (RNG) is faulty, SSL provides no
security.

Recent studies by Lenstra et al. [4], and Heninger et al. [5]
have revealed alarming findings about factorable keys used in
SSL servers. Heninger et al. [5] concluded that the root cause
of such vulnerable keys is not a cryptographic issue, but rather
an improper implementation [5].

It is thus very important for security researchers to
continuously evaluate the real-world implementation of any
security protocol. Such evaluations help by spotting
weaknesses and providing solutions and recommendations.
Toward this end, this paper aims to shed light on the
importance of proper implementation for SSL protocol. We
aim to raise awareness about the recently discovered
prevalence of factorable RSA keys on the Internet by [4] and
[5].

The rest of the paper is organized as follows: In section 2,
we provide background on the SSL/TLS

1
 protocol and RSA

cryptosystem. In section 3, we summarize some major studies
related to our topic. In section 4, we briefly describe our
methodology. Section 5 presents and discusses our results.
Section 6 outlines the limitations of our study, while section 7
provides a defensive solution. We conclude in section 8.

1For brevity, we will use the term SSL to refer to either SSL or TLS.

II. BACKGROUND

A. SSL, an Overview

SSL is a network security protocol that was originally
developed by Netscape in 1994 [3]. In 1996, the responsibility
of developing SSL was passed on to the Internet Engineering
Task force (IETF) [3]. IETF released TLSv1 that was based on
SSLv3 [3]. SSL is used to secure Hypertext Transfer Protocol
(HTTP) in order to provide HTTP over SSL (HTTPS).

SSL has two main stages and is divided into two sub-
protocols: the SSL Handshake Protocol and the SSL Record
Protocol [6]. The SSL Handshake Protocol is responsible for
negotiating the ciphersuite (cryptographic algorithms and key
lengths) options between the client and the server and allows
one or both parties to authenticate the other [6]. The main
stages of a typical handshake protocol can be described as
follows [3]: First, the client sends a ClientHello message to
request the server to begin SSL negotiation. The message
includes a list of ciphersuites proposed by the client. Second,
the server responds with a ServerHello message. In this
message, the server decides which ciphersuite will be used
during the communication. Third, in order for the server to
authenticate its identity, it sends a Certificate message, which
contains its public-key information. Fourth, the server sends a
ServerHelloDone message to confirm to the client that it has
finished its part of the negotiation (the ServerHello phase).
Then the server waits for the client response. Fifth, the client
sends a ClientKeyExchange message. It contains the symmetric
key information that both parties are going to use. Sixth, the
client sends a Finished message to the server to inform it that
the negotiation process has been completed successfully.
Finally, similar to the previous step, the server sends a Finished
message to the client for the same purpose.

B. RSA Cryptosystem

RSA is one of the earliest known public-key cryptosystems,
invented in the 1970s [7]. RSA allows two major types of
applications: encryption and digital signature [7].

1) RSA Setup: In order to encrypt or sign with RSA, the

message recipient or the signer of the outgoing message needs

to set up his RSA private-key. This is done once for all

messages and must be done prior to any actual communication

using RSA. The keys are set up as follows. First, compute N

(the modulus), which is a product of two large prime numbers,

p and q, such that [7]:
N = p × q (1)

These two primes are randomly chosen [7]. Second, one needs
to choose an encryption exponent e, which has to be relatively
prime to both (p−1) and (q−1) [8]. This means that:

GCD (e, (p−1) × (q−1)) = 1 (2)
Finally, one can compute another exponent, called the
decryption exponent d, from the previous values of p, q, and e,
such that:

d = e
-1

 mod (p−1) × (q−1) (3)
These three numbers, p, q, and d, must remain confidential at
all times. The RSA private key or decryption key is the pair (d,
N) [7] [8]. The user publishes the modulus N and the public
exponent e [7] [8]. Hence, the public key or the encryption key
is the pair (e, N) [7] [8]. For more details about RSA
cryptosystem and RSA key generation, refer to [7] [8].

2) RSA in SSL: In SSL, RSA is used in one of two cases

[5]:

 If the key-exchange protocol is RSA: RSA is used to
encrypt a session key chosen by the client.

 If the key exchange is Diffie-Hellman (DH): RSA can
be used to provide a digital signature in order to
authenticate messages exchanged during the DH key
agreement process.

RSA has been the most widely used key exchange protocol
for so many years. Also, it is the dominant signature scheme
used to authenticate DH key-exchange messages. In 2006, Lee
et al. examined over 19,000 SSL servers and showed that
99.86% of the servers support RSA key exchange protocol
compared to 57.57% of the servers supporting DH protocol
with RSA signature, while only 0.02% support DH with
Digital Signature Standard (DSS) [9]. In 2011, Holz et al.
measured the chosen ciphersuites from real SSL sessions in
two different runs. In General, the results show that of the top
10 ciphersuites chosen by the servers, DH key-exchange with
RSA signature appeared only in 3 ciphers, chosen by less than
30% of the servers [10]. On the other hand, RSA key-exchange
is used in the rest of the top 10 chosen ciphersuites,
representing the majority [10]. The principal role that RSA
plays in SSL has motivated our choice in this paper to
concentrate on RSA-key vulnerabilities in SSL servers.

III. RELATED WORK

In 2012, Lenstra et al. conducted a study that questioned
the validity of the assumption that distinct random numbers are
generated for every key [4]. In their dataset that contained 6.38
million distinct RSA moduli, they could factor 12,934 of them
(0.2% of the total) [4]. They concluded that keys generated
using “single-secret” algorithms based on DH such as ECDSA
and ElGamal are more secure than keys generated using
“multiple-secret” algorithms such as in RSA [4].

Concurrent with the previous study, Heninger et al.
conducted the largest ever Internet scan on the public IPv4
address space for hosts listening on ports 443 and 22 (SSL and
SSH hosts) [5]. They factored 16,717 distinct moduli affecting
64,081 SSL hosts (0.50% of the SSL hosts in their scan) [5].
They did a comprehensive analysis to identify the problem and
concluded that the main reason for widespread factorable keys
is low entropy due to faulty implementation, not a
cryptographic issue as Lenstra et al. concluded [5].

IV. METHODOLOGY

Our methodology can be described in four main steps: first,
we built a list of domain names. Since our target is commercial
servers, we looked for domain names that end with .com.* and
.co.* Top Level Domains (TLDs) where the * refers to the
country code (cc) if applicable (for brevity we will use the
terms .com and .co for the rest of the paper, but our dataset
includes ccTLDs as well as generic TLDs). We obtained a
giant domain names list from a public source. At the moment,
we are reluctant to publish the source to avoid liabilities in
helping attacks. From this list, we extracted the distinct .com
and .co domain names without taking any sub-domain names
(e.g. example.com). Second, we conducted an Internet scan to
extract SSL certificates. We performed the scan between the
end of November and the beginning of December 2012. For

every server in our list, we did the following: we created an
SSL socket on port 443; initiated a handshake; extracted the
whole certificate chain; stored each certificate; and finally,
parsed it to extract its attributes such as the certificate issuer,
subject, public key etc. Third, we retrieved the geolocation
information for the servers that successfully completed an SSL
handshake in the previous step. We achieved this through
commercial services that maintain IP geolocation databases.
The principal source was an on-line service provided by [11]
while a downloadable database from [12] used for locating 63
IPs that the first provider failed to locate. The accuracy of such
databases is questionable [13]. However, they can be
considered accurate at the country level [13] which is the level
we used in our study. We achieved step 2 and 3
programmatically using Java programming and MySQL
relational database (part of step 3 code provided by [11]). We
employed java multi-threaded programming in order to run
several tasks simultaneously and collect the data in a
reasonable time. Fourth, we computed the Greatest Common
Divisor (GCD) for all distinct moduli pairs we could collect. In
order to factor RSA keys efficiently, we ran an open source
implementation for a quasilinear GCD computing algorithm
based on the Bernstein algorithm [14] and provided by [15].
We used an Amazon EC2 instance running Ubuntu12 x86_64
with 34.2 GB of RAM. We also took research ethics into
consideration. All the data we used are publicly available. We
did not publish any affected website addresses, device vendors
or keys we have factored.

V. RESULTS AND DISCUSSION

In this section, we will present and analyze our results. Our
study is concerned with two issues in RSA keys: key lengths
and randomness. In our statistics, we used the distinct keys
only. We use the term SSL-server or simply, server to refer to
an SSL-enabled distinct domain name.

A. Our Scan Results in a Nutshell

From the original domain names set, we extracted
6,248,784 distinct domain names registered to .com and .co
TLDs. From those, we found 1,713,388 (27.42% of the original
.com and .co set) SSL-enabled servers. Of those, 1,713,291
returned one or more certificate. Only 523,225 IPs were behind
all of the SSL servers that returned one or more certificate. In
terms of SSL certificates, our scan collected a total of
3,543,291 X.509 SSL certificate chains. Of those, there are
1,713,291 leaf certificates. We found a total of 385,140 distinct
RSA public keys used in all the certificates we collected
(99.45% of these keys are in the leaf certificates).

B. Weak Keys

An RSA public key consists of the pair (N, e): the modulus
N and the public exponent e. The key length/size refers to the
size of the modulus N in bits [16]. It is an important aspect in
the security of any public-key cryptosystem. The longer the
key, the more security it provides [16]. On the other hand,
longer keys result in slower computation [16]. Keys with
lengths of 512-bit and 768-bit have already been factored by
academic researchers in 1999 and 2010 respectively [16] [17].
Therefore, keys with length ≤ 768-bit should not be used.
According to the National Institute of Standards and
Technology (NIST) recommendations, the security strength of

1024-bit keys (comparable to 80-bit security strength) in
encryption is “deprecated” (i.e. can be used with possible risk)

from the year 2011 to 2013 and “disallowed” by 2014 [18].
Lenstra’s key-length recommendations which are based on
mathematical equations suggest that 1024-bit keys can provide
sufficient security until 2006 [19] and that the minimal key
length for sufficient security until 2012 should be 1229-bit
[20]. In August 2012, Microsoft made positive steps toward
pushing servers’ administrators to select sufficient key lengths.
Microsoft has released a Windows update that will block
applications using RSA keys < 1024-bit [21]. For example,
after the update, Internet Explorer will not open any website
that offers an RSA certificate with key < 1024-bit [21].

Our results show that 0.3% of the keys have lengths
< 1024-bit, providing inadequate security. Table I summarizes
our findings of key sizes which may be considered weak in the
year 2013.

Weak keys are more dangerous when used in intermediate
or root certificates since they sign other entities’ keys. In non-
leaf certificates, we found 14 keys ≤ 512-bit affecting 18
servers, 16 keys < 1024-bit affecting 413 servers and 768 keys
≤ 1024-bit affecting 135,981 servers.

C. Key Length Practices and IP Geolocations

In this section, we want to answer two questions: 1) are
strong keys adopted in certain countries faster than others? and
2) are weak keys more frequent in certain countries than
others? In this section, our definition for weak keys is a lower
bound. Today, a 512-bit key can be factored by an average
adversary using typical hardware [5]. Therefore, we define
weak keys as those with lengths ≤ 512-bit. We also defined
strong keys as those with lengths ≥ 2048-bit (per NIST’s
recommendations [20]). To have more reliable statistics, we
limited our comparisons to the 10 countries which showed the
highest number of distinct moduli.
 Our results show that the United Kingdom (UK) is the top
country in terms of adopting strong keys. In terms of weak
keys, Italy showed the highest percentage, followed by France,
while the Netherlands showed the lowest percentage. It is
worth noting that we recompiled the statistics for keys < 1024-
bit and the countries’ order remained identical to that of keys ≤
512-bit except in Germany and Japan, they showed equal
percentages in keys < 1024-bit (0.23%). Table II summarizes
our findings. These results could be studied in light of
government actions to improve cyber security, in particular,
what various governments’ security services have
recommended for the industry. For example, the French
Network and Information Security Agency (FNISA) has set
2048-bit as a minimal key length since 2010 [20]. However,
there is no evidence that the industry is following these
recommendations.

TABLE I. CUMULATIVE REPRESENTATION FOR WEAK KEYS

Length
and % of Weak Keys and The Affected Leaves

keys % keys # affected servers (leaves)

≤ 512-bit 1,082 0.28% 5,003

≤ 768-bit 1,126 0.29% 5,532

< 1024-bit 1,140 0.30% 5,552

≤ 1024-bit 89,978 23.36% 406,698

TABLE II. WEAK VS. STRONG KEYS IN THE TOP 10 COUNTRIES

Country
Distinct Keys

Total # Strong % Strong # Weak % Weak

US 247,307 196,250 79.35% 582 0.24%

UK 34,537 27,486 79.58% 89 0.26%

Germany 16,360 11,590 70.84% 36 0.22%

Canada 12,100 8,855 73.18% 37 0.31%

Australia 11,587 9,204 79.43% 35 0.30%

Japan 10,164 7,802 76.76% 23 0.23%

France 7,032 4,874 69.31% 50 0.71%

Netherlands 4,924 3,002 60.97% 6 0.12%

Spain 3,856 2,763 71.65% 14 0.36%

Italy 3,048 1,839 60.33% 22 0.72%

D. Can RSA Keys Be Broken?

 RSA security is based on the difficulty of factoring [22] [9].
To date, nobody has yet been able to factor a 1024-bit modulus
[5]. The largest modulus that has been shown to be actually
factored is 768-bit [5] [17]. However, there is a known
vulnerability that leads to factoring a 1024-bit RSA modulus
[5]. It can be exploited if an adversary can find a pair of moduli
that share a prime factor [5]. The recent discovery of the
widespread factorable RSA moduli on SSL hosts on the
Internet by [4] and [5] was achieved by exploiting this
vulnerability.

1) Computing the Shared Prime Leads to the Private Key:

The shared prime between two distinct moduli N1 and N2 can

be found by computing the GCD of the two moduli, i.e. GCD

(N1, N2) [5]. If the GCD is not equal to 1, this means that both

moduli share a prime factor p [5]. Therefore, the second prime

q for both moduli can be computed [5]. This in turn leads to

computing the private key d for both moduli using equation 3

in section II [5]. Figure 1 illustrates the vulnerability.

2) Computing the GCD Using the Naïve Method: In

theory, anyone can collect public keys from the Internet and

factor some of these keys by computing pair-wise GCDs. In

practice, this is not feasible for large sets. Even with a very fast

GCD, it is not conceivable for an ordinary adversary to

compute the GCD for all of the public keys he may be able to

collect. We analyze the complexity of the computation using a

similar approach to [5] using our own measurements and

datasets. In our case, the execution time for a single GCD

computation in a modern PC with an Intel Xeon 3.4 GHz

processor and 16-GB RAM, using the GNU Multiple Precision

(GMP) arithmetic library for two distinct 2048-bit moduli (the

majority representation of key lengths in our set) took 0.029

milliseconds (ms). The GCD for a pair of numbers can be

computed with complexity O(n
2
) for n-bit numbers [5] [23].

This would cost O((mn)
2
) to compute all pair-wise GCDs [23].

We computed the total time complexity as:

Complexity = T × (

) (6)

where n is the number of distinct keys and T is the execution
time for computing the GCD of a pair of moduli. Therefore,
computing pairwise GCDs for our set of 385,140 distinct keys
would take approximately 26 days (assuming the average key
length is 2048-bit). We could run the computation for our
(smaller) set. But since we were looking for more factorable

Figure 1. RSA-key vulnerability when two moduli share a prime

keys, we combined our set with the Electronic Frontier
Foundation (EFF) set [24] and this resulted in a giant set that
would take around 4.4 years (assuming the average key length
is 1024-bit). However computing GCDs can be further
improved considerably.

3) Computing the GCD Using Efficient GCD: For a more

efficient method to compute the pair-wise GCD for all pairs of

distinct moduli, a quasilinear-time algorithm based on

Bernstein’s algorithm can be employed [5]. The algorithm’s

description can be found in [5]. The whole Bernstein method

would cost: O(nm × (log m)
2
 × log log m) [5] [23].

E. Factoring RSA keys

1) Factorable Keys in Our Dataset: In this section, we
want to test the hypothesis that the problems detected of
factorable keys on the Internet could also concern e-commerce
websites. Therefore, we ran an open source implementation of
the quasilinear GCD computation [15] on the set of distinct
moduli which resulted from our scan. We could factor 7
distinct moduli affecting 7 different SSL servers registered to
.com and .co domain names. All the 7 factored moduli share
the same factor. By manual inspection, we found that 6 of the
factored keys are still in use by the servers as of this writing.
The affected servers’ web pages have the same design, serving
as login pages only. There is no information that can confirm
the devices type, but the HTML code for the login pages
confirms that the web pages are a user interface administration
tool. However, after we completed the next experiment (in the
combined moduli set), we found many affected servers that
showed the exact web interface and have the word “adsl”
appears in a sub-domain for Internet Service Provider (ISP)
domain names. This indicates that the affected web servers we
found are installed in routers. Such web servers, which are
built into the devices during the manufacturing and serve as a
web management interfaces for the devices are known as
EWSs [25]. We tried to open the web pages for the same
domain names using plain HTTP protocol and the websites we
found are as follows: 4 websites belong to companies; 1
general website; 1 non-English website registered to a
broadcasting corporate (according to whois online tool [26]).
The companies’ websites open only with plain HTTP, while
the HTTPS opens the EWSs login page. In terms of certificate
details, the moduli were found in expired, self-signed (system-
generated) certificates and issued by the same issuer. The
validity dates for all the affected certificates show that they
share the same starting year, day, hour and, with one exception,

The Shared Prime

q1 p q2

q2 = N2/p q1 = N1/p

d1 = e
-1

mod (p-1)×(q1-1) d2 = e
-1

mod (p-1)×(q2-1)

GCD (N1, N2) = p

N1 N2

minute (the exception differs only by approximately 1 minute).
We also queried all the distinct certificates (i.e. with distinct
moduli) that have been issued by the same issuer. We found 27
certificates with 27 distinct non-vulnerable moduli. Most of
them share the same validity dates with one or more other
certificates, with slight differences in minutes. Reference to
[5], the root cause for the occurrence of such factorable keys is
insufficient entropy at boot time. From our experiment, we
conclude that there is no factored moduli belong to e-
commerce websites, and that the affected servers are EWSs
serving as remote management web interfaces for network
devices. Our results confirm the findings of [5] which provided
thorough analysis of the low-entropy problem. However, we
believe that such vulnerability in embedded devices should not
be underestimated. Factored keys would allow an adversary
from decrypting an intercepted traffic coming to the vulnerable
device. This in turn can result in compromising the
administrator’s credentials. Once the administrative credentials
become in the adversary’s hands, he has control of the device
and this would allow him several types of attacks including
DoS, corporate espionage, and firmware modification [25].

2) Factorable Keys in the Combined Set: Because we were
looking for more factorable keys, we combined our moduli set
with EFF set. Our set added 291,693 new distinct moduli to the
EFF set. We repeated the experiment, resulting in a total of
6,513 distinct factorable keys. Out of these, 5 new distinct
factorable keys came from our dataset. Table III shows the
number of factorable keys found in each set along with the
original set size and the execution time. The big difference in
the number of factorable keys found in our set compared to the
combined set can be due to several factors: First, our Internet
scan was based on domain names while EFF scan was based
on IP addresses. There is a considerable number of affected
devices that did not return a domain name when we performed
rDNS lookup. Second, most of the factored keys appear in
certificates for sub-domains and seldom in main domain
names. Our scan included main domain names only. Third, a
single IP can be behind several domain names. Therefore,
domain-name-based scans such as ours would require much
larger input than it in IP-based scans. Finally, EFF scan is
universal while our scan is for a fraction of domain names.
However, we chose domain-name-based scanning strategy as it
would allow us to target specific sector by the TLDs
(commercial: .com and .co) and directly and accurately identify
the companies or stores to which the factored key belongs.

3) Factorable Keys in Non-expired Certificates: In this

section, we want to determine whether certain keys factored in

the past (EFF keys have been included in [4] [5] work) are still

in use today. We limited our inspection to vulnerable moduli

resulted from the combined set that appear in non-expired

certificates. As of January 4, 2013, we had found 798 distinct

vulnerable moduli in non- expired certificates, affecting 6,167

servers with distinct IPs (the vulnerable moduli were repeated

among many servers). Figure 2 illustrates the area we

inspected.

 We questioned how many .com, .co and also .edu servers are

affected by the non-expired vulnerable moduli. Since the EFF

scan was based on IPs, we had to make a reverse DNS lookup

(rDNS) to retrieve the domain names for the IPs that showed

TABLE III. FACTORABLE KEYS

The Set

Our Set
 Our Set +

EFF Set
EFF Set

Distinct Keys 385,140 4,225,058 3,933,365

Factored Keys 7 6,513 6,508

Execution time 286.075 sec. 3,381.675 sec. 2,890.326 sec.

 Figure 2. Illustration for the area of non-expired vulnerable moduli

factorable keys. 1,109 (17.98%) of the IPs did not return
domain names. The rDNS lookup returned 268 .com and .co,
of which 112 servers (41.79%) are available and still using the
factored keys, 34 servers (12.69%) have changed their keys
and 122 (45.52%) are not available. We also found a total of
171 .edu servers, of which 63 (36.84%) still use factored keys,
49 servers (28.65%) have changed their keys and 59 servers
(34.50%) are not available. Note that the nature of these
devices may cause them to be unavailable at all times.
Therefore, we expect to have found more vulnerable keys if we
had tested the unavailable devices at other times. Again, all the
affected web servers that we inspected appear as EWSs
deployed in a variety of hardware including network printers,
photocopiers, routers, and IP-based remote power
management.

VI. STUDY LIMITATIONS

In this section, we list some limitations to our study. The
registration for .com and .co domains is not restricted.
Therefore, not every .com and .co domain name in our list is
for a commercial website. In addition, the domain names list
we used was created in 2009 and is not very recent. From the
technical side, since our scanning program was built in Java,
our scan was bounded to Java Security. For example, we could
not complete SSL handshakes with servers that offered SSLv2
or servers with key lengths < 512-bit (length = 512 is allowed).
However, we found means of circumventing retrieving
untrusted certificates or certificates with invalid hostnames that
Java does not allow by default [27].

VII. DEFENSES

Several solutions have been proposed to warn end users
about vulnerable keys. “Check Your Key” is an online solution
developed by [5]. It checks keys against a database of known
vulnerable keys such as the factored RSA keys in SSL
certificates which resulted from [5] study. We tested some SSL
servers that showed factorable keys in our study, the service
successfully detected them but it shows an error whenever we
check a server with expired certificate. Although many
factored keys appear in expired certificates and are still in use
by web servers, it seems that the service can not report them.
We have sent an enquiry about this issue to one of the authors
to confirm this point, but we have not yet received a response.

Distinct vulnerable moduli in

non-expired certificates

Distinct moduli

in non-expired

certs.

(1,314,339)

Distinct
vulnerable

moduli

(6,513)

Our set + EFF’s

sets distinct

moduli

(4,225,058)

798

VIII. CONCLUSION

In response to recent claims by several authors that many
RSA keys can be factored, with the hypothesis that the
problems detected for some devices could concern major e-
commerce websites, we decided to proceed with our own
Internet scan with a particular focus on commercial websites.
Our study also aimed to determine whether certain keys
factored in the past are still in use today, and if it is possible for
an amateur with a single PC using publicly available
information to break these keys in a reasonable amount of time.

Our work involved looking at large datasets gathered from
our scan and one public database. We compiled various
statistics on key sizes used in various countries. We report that
servers located in Italy and France showed the highest
percentage of insecure key sizes, while servers located in the
UK, US and Australia were leading in adopting secure key
lengths with 2048-bit or more out of all of the countries in the
comparison. This indicates that it may be riskier to make
secure connections with servers located in Italy or France than
with servers located in the UK and US. However, as this
depends on many factors, we were unable to verify this.

We devoted much effort to study individual RSA keys. We
analyzed the feasibility of factoring some of these keys by the
naïve pair-wise GCD and also by the efficient algorithm based
on Bernstein algorithm. We ran the whole attack in order to see
if there are vulnerable keys. We identified and factored a total
of 6,513 such keys.

From our scan, in the keys that we factored and for which
we traced the web servers, none affected e-commerce websites.
However, we report factored keys used by corporations but the
certificates were deployed for EWSs and not for an ordinary
web server. Further research could focus on exhibiting
vulnerable live commercial websites by replicating the
experiment with more recent and larger lists of commercial
domain names.

From the combined set of moduli, we inspected the non-
expired vulnerable moduli that appeared in .com, .co and .edu
servers. On average, we found around 40% of the keys which
known to be factored in the past are still in use today and some
affected certificates will not expire until 2038.

Our results suggest that, even though we have not identified
a specific live Internet store for which we can crack the keys,
there is a possibility for anyone who might replicate the same
experiment to mount attacks on the Internet. This could include
MITM, DoS, data modification and firmware modification
attacks. It also seems that it is now possible to impersonate a
number of embedded devices such as routers or gateway
servers on the Internet. The exact implications of this for
national and international security require further investigation.

ACKNOWLEDGMENT

A major part of this paper has spanned from the author’s

MSc. thesis submitted to University College London. Special

thanks go to Dr. Nicolas Courtois, the thesis supervisor.

REFERENCES

[1] R. Atkinson, S. Ezell, A. Scott, D. Castro, and B. Richard. (2010,

Mar.). The Internet Economy 25 Years After .com [Online].
Available: http://www.itif.org/files/2010-25-years.pdf.

[2] VeriSign. Inc. (2012, Jul.). The Domain Name Industry Brief

[Online]. Available: http://www.verisigninc.com/assets/domain-

name-brief-july2012.pdf
[3] S. Thomas, SSL and TLS Essentials. New York, NY, USA: John

Wiley & Sons, Inc., 2000.

[4] A. Lenstra, J. Hughes, M. Augier, J. Bos, T. Kleinjung and C.
Wachter, “Ron was wrong, Whit is right,” IACR Cryptology ePrint

Archive, Report 2012/064, 2012.

[5] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman,
“Mining Your Ps and Qs: Detection of Widespread Weak Keys in

Network Devices,” in Proc. of the 21st USENIX conf. on Security

symposium (Security'12), Berkeley, CA, USA, 2012, pp. 35-35.
[6] T. Dierks and E. Rescorla. (2008, Aug.). The TLS protocol version

1.2 [Online]. Available: https://tools.ietf.org/html/rfc5246

[7] A. Shamir, R. Ronald, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM

21, vol. 26, no. 1, pp. 120–126, 1978.

[8] D. Boneh and H. Shacham, “Fast variants of RSA,” CryptoBytes,

vol. 5, no. 1, pp. 1–9, 2002.

[9] H. Lee, T. Malkin, and E. Nahum, “Cryptographic Strength of SSL /

TLS Servers: Current and Recent Practices,” in Proc. of the 7th
ACM SIGCOMM conference on Internet measurement (IMC ’07),

New York, NY, USA, 2007, pp. 83–91.

[10] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL
Landscape – A Thorough Analysis of the X . 509 PKI Using Active

and Passive Measurements,” in Proc. of the 2011 ACM SIGCOMM

conference on Internet measurement conference (IMC ’11), New
York, NY, USA, 2011, pp. 427–444.

[11] IP Address Geolocation Online Service [Online]. Available:
http://www.ipaddresslabs.com.

[12] MaxMind-GeoIP IP Address Locating Database [Online].

Available: http://www.maxmind.com/en/geolocation_landing.
[13] I. Poese, S. Uhlig, M. Kaafar, B. Donnet, and B. Gueye, “IP

Geolocation Databases: Unreliable?,” SIGCOMM Comput.

Commun. Rev., vol. 41, no. 2, pp. 53–56, 2011.
[14] D. BERNSTEIN (2004, May), HOW TO FIND SMOOTH PARTS

OF INTEGERS [Online]. Available: http://cr.yp.to/papers.html.

[15] N. Heninger and J. Halderman (2012, Mar.). Fastgcd Source Code
[Online]. Available: https://factorable.net/resources.html.

[16] EMC Corporation (2012). RSA Laboratories - 3.1.5 How large a

key should be used in the RSA cryptosystem? [Online]. Available:
http://www.rsa.com/rsalabs/node.asp?id=2218#footnote.

[17] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P.

Gaudry, A. Kruppa, P. Montgomery, D. Osvik, H. Riele, A.
Timofeev, and P. Zimmermann, “Factorization of a 768-bit RSA

modulus,” in Proc. of the 30th annual conf. on Advances in

cryptology (CRYPTO'10), Santa Barbara, CA, USA, 2010, pp. 333–
350.

[18] E. Barker, W. Barker, W. Burr, P. William, and M. Smid. (2012,

Jul.). Recommendation for Key Management – Part 1: General
(Revision3) [Online]. Available:

http://csrc.nist.gov/publications/nistpubs

[19] A. Lenstra (2004, June), Key Lengths [Online]. Available FTP:
ftp://cm.bell-labs.com/who/akl/key_lengths.pdf

[20] D. Giry. (2013, Feb.). Cryptographic Key Length Recommendations

[Online]. Available: http://www.keylength.com.
[21] Microsoft (2012, Aug.). Microsoft Security Advisory: Update for

minimum certificate key length [Online]. Available:

http://support.microsoft.com/kb/2661254.
[22] J. Katz and Y. Lindell, Introduction To Modern Cryptography.

Boca Raton, FL: Chapman & Hall/CRC, 2008.

[23] I. Mironov (2012, May). Factoring RSA Moduli. Part I [Online].
Available: http://windowsontheory.org/2012/05/15/979/.

[24] The Electronic Frontier Foundation (2010, Aug.). The EFF SSL

Observatory [Online]. Available: https://www.eff.org/observatory.
[25] M. Sutton (2012). Corporate Espionage for Dummies: The Hidden

Threat of Embedded Web Servers [Online]. Available:

http://365.rsaconference.com/servlet/JiveServlet/previewBody/3453
-102-1-4552/HT2-202.pdf.

[26] Domain tools [Online]. Available: http://whois.domaintools.com.

[27] S. Nakov (2009, Jul.). Disable Certificate Validation in Java SSL
Connections [Online]. Available:

http://www.nakov.com/blog/2009/07/16

