Software Security Assessment smbftpd-0.96

Using manual analysis and static analysis tooldirfpRats, and Flawfinder

Eman Alashwali

Information Security, Computer Science
University College London (UCL)
London, UK
eman.alashwali.10@ucl.ac.uk

Abstract—This paper aims to assess security for smbftpd- entries for format string vulnerabilities for theay 2007
0.96 program that contains a format string vulneralility. [4].

The assessment will be achieved manually at firsthen by

using three different software static analysis toal which are:

Splint, Rats, and Flawfinder. The paper will disciss each To address this problem, various techniques haea be
tool's assessment results individually in order t@nswer the developed to improve software security and discover
following questions: Whether the tool discovered té format software vulnerabilities. Manual analysis and Statialy-

string vulnerability? Whether the tool found other - -
vulnerabilities? And whether the tool was helpful? At the ~ S'S @€ some of the used techniques to spot andctor
software flaws [5].

end of the paper, there will be a rough comparisobetween
the three tools to summarize what are the common an
unique results between the tools.

This paper aims to assess the security of SmbFTPD-

Keywords-manual analysis; static analysis; SplifRats; 0.96 program which is a FTP daemon built basedhen t
Flawfinder. FTP daemon of FreeBSD 5.4 [6], by using manual
analysis first, and then by using the following tista
l. INTRODUCTION analysis tools: Splint, Rats and Flawfinder ancegithat
As software applications usage increases, egur it contains a format string vulnerability. Thists answer
these software becomes more essential [1]. Buildimg the following questions: Do the tools find the
cure software is a real challenging mission. Ihdg un- Vvulnerability? Do the tools find other vulnerabéi? Are
common to hear from software security experts thate the tools helpful?. Also, the paper is going to pane the
is no 100% secure software. The number of discoverethree tools to answer the following two questionthat
security flaws confirms such claims. In 2011 alotieg ~ are common results? What are unique results? Hyerp
National Vulnerability Database (NVD) [2] published will not cover all security warnings from the toplsut
4,151 vulnerabilities under the software flaws erit. only the most important vulnerability and bugs.
Software vulnerabilities are the main source fdtveare
security incidents [3] [1]. These vulnerabilitie® &aused
by many different reasons, they can be a resultaofs,
back doors made by the developer, or weaknesstee in
programming language itself [1]. Vulnerabilitiese dsugs
that that can be exploited by untrustworthy to tduat-
tacks against the system.

The coming sections are divided as the followingg-S
tion 2 will discuss the manual analysis. Sectionvi8
discuss automated analysis using three differesmticst
analysis tools: 1) Splint, 2) Rats, and 3) Flanéindsec-
tion 4 will show the common and unique results.afin
in section 5 the conclusion.

One of the well known vulnerabilities in software- s

curity area is format string vulnerability. Formsiring I. MANUAL ANALYSIS
vulnerability occurs when an untrustworthy hasabdity . N . .
to provide arbitrary characters in the format frio a As its name implies, manual analysis requiresn(s)
format function [4]. To exemplify, the following de: ~[©© manually test the code [7]. It is one of theesid
printf(string) is an example of format string vulability, =~ Methods to analyze the code and it requires reattiiag
while the correct method of writing this code is: Source code thoroughly looking for vulnerabilit[8}
printf(“%s”,string) [4]. Reference to the NVD [Ziprmat

string vulnerability can result in dangerous consemges In our experiment, in order to perform manuglgsis
such as: violating confidentiality, integrity andadabil- for smbftpd-0.96 to find vulnerabilities, this wged us
ity, unauthorized information disclosure, servidsrup- to have knowledge about the most common vulnetissili
tion and unauthorized access. such as buffer overflow, format string, etc. anavitbey

occur. Then, looking at each line of code thairane to
any of these vulnerabilities. We achieved thisusing

format string vulnerability since it was publiclyaog- “find”_ and ‘_‘egrep" _Iinux tOOIS.' to_ search for some
nized as a type of security attacks in 1999, itioged to functions existence in all - C files in smbftpd-0.86d
appear years after that [4]. For example, the Commodisplay their contexts. The command we used isd fi-

Vulnerabilities and Exposures (CVE) database hip 40 €xec egrep --colour -n -i -H ™printf*|setproctiggslog’
/home/e/Desktop/CW1/smbftpd-0.96/filename.c {} \; “

Despite the proposed solutions by researchershéor t

Where the value of “filename” stands for the C fifat
we want to analyze.

In our experiment, using “find” and “egerp” toolswas
possible to perform the search on both directony e
level. We preferred t@analyze one file at a time sin
analyzing all C files at once using this methodl"
produce a tremendous amount of lines and is a ggsoc
exhaustive for our experiment's intel centrinoZdgpwith
4 GB RAM. The command must include the funci
name§) that the known vulnerabilities are more likedy
occur in. For example, we search for strcpy to tl®
buffer overflow vulnerabilities, and search for rfat
functions such as printf, sprintf, etc. to look farmat
strings vulnerabilities. We obsex¢hat when we tried t
include other format functions with the * symbol
include all possible functions such as: err*, vemarn*,
vwarn*, the search time got extremely long since
letters “err” and “warn” occurred in many contestsch
as commentand not only in the functions we are looki
for. The command's output shows the file name,
number, and the context that contains the funcu@
search for, and the function appears in color. rAfte
command result's displayed, we read the died lines
thoroughly to make sure they are not vulnerable
required, we viewed the full code by opening the ifi a
text editor for further checking. The following €ige
shows the command output.

Figure 1. Part of the output for the followimrgmmanc find . -exec

egrep --colour -n i H *printf*|setproctitle|syslo
/home/e/Desktop/CW1/smbftpd-0.96/"flename™{ \; for manual
analysis

By using manual analysis to assess sm-0.96, we
were able to find the format string vulnerabiliin
“dirlist.c” file in “SMBDirList” function in line 267 after
searching about *printf*. It was possible to idéntihe
format string vulnerability since we were lookimgsmall
number of files for a specific type of vulneraldg thal
occur in limited number of functions. We considered |
267 as a format string vulnerability since it useformat
function as the following: fprintf(pClient, szBufyhich
allows an attacker to exploit this vulnerability bgting
specially crafted filenames, which livallow him to run
arbitrary commands after login (including anonym
login), while as explained previously in the intuation,
the correct code must be: fprintf(pClient, "%s"BaB.
We also tried to find buffer overflow vulnerabiés
manually by sarching for strcpy functions. We found tl
function used many times in more than file. Cleatging
this unsafe function represent a bug. It can béoérg if
the source string does not have bound checking.
example, in file smbftpd.c, we found e following
suspicious piece of code in line 337: strcpy(szRétath,
szCurDir), but since szCurDir is a value that i$ going
to be entered by untrustworthy (any outside useg
considered this a bug but not a vulnerability. &imbugs
exists in other files such as ftpd.c, misc.c.

Manual analysis was tedious but, at the end, pes:
However, to locate other vulnerabilities with thmethod,
this was not possible (at least in a reasonableuatof
time). Since this will require us to spec all the
suspicious function names, and search for thernvémye
single file. In addition to that, this method isryeslow
and as much as we include more functions in
command, the search process get slower. With mi
analysis, the number of false giiive results was ver
high as the command we used is merely a matc
process that outputs the functions we search fenewel
occurred without any checking for the correctnesthe
code by any means. The checking and decidin
completely left for the analyzer.

Manual analysis is known to be time and la
consuming process [3] [[7Some might argue that it is t
best method. However, its efficiency mainly relies
human knowledge and experiencé [B]. It requires full
understanding for the code, in addition to comp
security experience [31t is a feasible method if tt
analyzer knows what he is looking for, i.e spedifiee of
vulnerabilities and in specific filewhile this might b
extremely difficult for large programs and diffeteagpes
of vulnerabilities.

M. AUTOMATIC ANALYSIS USING STATIC ANALYSIE
TOOLS

To overcome the difficulties in manual analysis/esal
solutions have been found to automate analysis
process, static analysis tools are examples of
solutions. Static analysis is the process of examgiand
making a judgment about the source code witl
executing it [3]. A number of advanced and effex
static analysis tools have beenveleped in the recel
years [1]. Splint, Rats, Flawfinder are examplestatic
analysis tools produced to test source codes. derdo
test these tools, we are going to make a sec
assessment for the source codes of sm-0.96 using
Splint, Rats and Flawfinder.

A. Splint (Secure Programming Lii

Splint is an open source static analysis tool Huains
for security vulnerabilities in C code [8]. In atdn of
performing most of its predecessor (Lint tool) dtgadt
does more advanced checks Uging annotations whic
are stylized comments that gives inference a
variables, functions, parameters and types [8]
Annotations are added to libraries and code to mecu
the programmer intents [5]. Splint checks whether
code matches the gpfications mentioned by annotatio
[5]. Splint can detect wide range of problems sast
Buffer overflow, dereferencing a possibly null peir
type mismatches, memory management errors suc
memory leaks, problematic control flow such
possibilty for infinite loops [8]. Unlike other tools,
checks for coding style and errors that are nlatted to
security [9]. Splint can perform the checking for
directory or a single file.

After running splint against our code for srpbif0.96,
testing one file at a time. When we tried to tektlist.c”,
using the command: “splint -linclude/ +posixlib eproc -
D__gnuc_va_list=va_list dirlist.c”, we got 109 wargs
which is a large number and this is for one filasist of
319 lines of code only. The output gives the filmealine
number, column number, description of the warnangyl

performs basic analysis to avoid the conditiong tre
obviously not a risk [10].

Rats can analyze a directory or a single fifethe
command given a directory name, Rats will checkCall
files inside this directory. For more convenientpa,
Rats provides several options such as -w whiclwalline

sometimes, a possible reason for the warning andnalyzer to list warnings belongs to a certain sgvkevel

suggestion for how to inhibit a warning. Splint bu
detect the format string vulnerability in “dirlist. in
“SMBDirList” function in line 267. In addition tohat, it
detected another 108 warnings. One reason forhigts
number of warnings is that our code is not anndtaisd
splint depend on annotations. Using code annotaibam

(1, 2 or 3). It also has a useful option -i whici display
the functions that takes external input at the ehthe
report [10] the thing that makes the report moeeladble.

In our assessment we tried both levels, dirgcamd
file. We preferred to perform the assessment biintgs

reduce the number of warnings. For example, thene file at a time. For example, when we analyzed

following warning:
“ dirlist.c:182:25: Null storage szPath passed as-mull
param: strchr (szPath, ...) [..] “ can be resolegddding

“dirlist.c”, the file that contains the format stg
vulnerability, we typed the following command: ‘sat
dirlist.c”. Rats discovered the format string \edability

a *@null@*/ annotation to the function parameterand classified it as (High). Also, it discoveredter 9

declaration. In addition to annotations, splint merhas a
long list of command flags to customize the outpdr
example, the argument “-nestcomment” will
warnings such as the following:

vulnerabilities under the same severity level. gdrats
in other files, we found that most of false postiv

ignore warnings are repeated such as the following: “Hfgted
“ dirlist.c:193:34:

size local buffer”, that is displayed for any fixside array

Comment starts inside comment A comment operas a caution for buffer overflow when dealing witted

sequence (/*) appears within a comment. [..]". Alde -

size arrays. For example, in dirlist.c line 37, kieeve char

weak flag will make weaker checking but the analyze szPerm[11] when we checked it in the code, we fabad
must be careful in using these arguments to avoid will be used in a strcpy function, but the saustring is

overlooking
command to be: splint -nestcomment
+posixlib -preproc -retvalint -compdef -predboolint
usedef -mustfreefresh -type +ptrnegate -retvalother
D__gnuc_va_list=va_list dirlist.c | less”, and wet @7
warnings, one of them is the format string vulnditgtin
line 267, and the rest 26 are false positives.

Splint output was difficult to read and it wdifficult to
prioritize the severity warnings. Splint developesay:
“Our design criteria eschew theoretical claimsamdr of
useful results.” [5]. Splint uses heuristics to lsgpa the
code and in order to increase the class of prasetti be
checked, it has to sacrifice the results correstressd
completeness, i.e, it will warn falsely and it wibht detect
all problems [5]. In order to get more sound repottie

real vulnerabilities. We customized oura fixed sstring as

the following: strcpy(szPerm,

-linclude/"lrwxrwxrwx"), which does not represent a risk snthe

source string is less than or equal to 10 chareszhiéso,
running Rats against different files, we obsenlet Rats
reports any use of syslog, without checking whetbet
used correctly or not.

Rats uses lexical analysis instead of pardiregcode
[5]. Therefore, it gives imprecise warnings as &rms
whenever it finds a name of unsafe function written
another ways (for example: local user-defined fionsi
without checking whether the reported functionssdiin
a safe different method or not [5].

C. Flawfinder

code must be annotated. Splint reports warnings tha Flawfinder is another open source static aisilfool.
resulted from inconsistencies between the sourate,co !t is limited to C and C++ programming languagesyon
annotations and convention of the language [5]. Théll]. It can handle many types of security problesush

needed effort in annotating codes stands an obkstacl
adopting annotations [5].

B. Rats (Rough Auditing Tool for Security)

Rats is an open source analysis tool for valoiity
scanning. It supports several programming languagels

as: format string, buffer overflow, race conditipp®or
random number acquisition and potential shell meta
character dangers [11]. Although, it is similaRATS in
its approach, but it has some features over othels.t
Flwafinder can deal with the gettext (* a commdrdry
for internationalized programs”), the thing thatuees
the false positive hits in internationalized praogsa[11].

as: C, C++, PHP, Python and Perl [10]. It discoversSecond, it can give better risk priority levels &s
common errors such as buffer overflow, time of &ec determines the risk level by the values of the patars

time of use (TOCTOU) race conditions [10]. It outpa
list of possible problems, along with a short dgsiom
and suggested solution. Also,
assessment of the problem severity (1: High, 2: iviad

of the function in addition to the function itselfor
example, in many contexts, constant strings hasidow

it provides a rouglrisk level than variable ones [11]. Third, it prdogs the

option to show the context where the flaw occurred

3: Low) which might help code analysts to manage th which makes it easier to use and will save theyaealks

problems' priorities. Rats As its name implies, sk

rough checking. Therefore, it might not discovel al

vulnerabilities, and might report false positiveH.

time [11].

The output shows a list of the potential rigkth the
filename, line number along with the risk level efé are
five levels of risks in flawfinder starting from She
most severe, till 1: the less. Flawfinder provideseral
flags to customize the output, some useful flagd tie
used in our experiment are: --minlevel that sets
minimum level of risks to be displayed in the oufmand
—context that shows the context that the risk aecum.
In addition to that, the output can be produced ithe

HTML format using —html flag which when exported tq
html file gives a more readable output than on th
command line. For the above mentioned features, V

believed that flawfinder is a good option for ardhtool
to be used in our experiment.

Flawfinder can analyze code in directory ance fil
levels. In our experiment, again, we preferrecest files

Splint Rats Flawfinder
Tool's General purpose. General General
Scope purpose. purpose.
Technique Rule checking Lexical Lexical
analysis analysis
Code Need pretreatment No need for No need
dreatment for the code. pretreatment | for
pretreatme
nt
Report Hard to under- Easy to read, | Easyto
format stand, does not risks classifi- read, risks
include the con- cationin 3 classifica-
e text, does not levels, ordered| tionin5
Ve classify risks, and | by risk level, levels,
does not suggest | and suggest ordered by
solution. solution risk level,
suggest
solution
Table 1: Summary of the main differences betweéerttree tools
V. CONCLUSION

one by one. For example, to analyze the code for

“dirlist.c” file, we wused the following command:”
flawfinder --context —minlevel=3
/home/e/Desktop/CW1/smbftpd-0.96/dirlist.c
>results.html “. After running the command, flandar
could find three potential vulnerabilities “hitsit. could
find the format string vulnerability in addition smother
two vulnerabilities but they are false positives.

The tool was easy to use, the flags that tbé dffers
to adapt the output resulted in a short report phavided
us with the real vulnerability in our code (the rfat
string vulnerability) with the minimum false pogii
records. However, the results are not very accluaaté
classified the format string vulnerability in lev&l while
a false positive was in level 5.

V.

After trying three tools, it is convenient tonsmarize
the common and unique results in these tools. gl
three tools were open source tools, easy to geiresteall.
They could discover the format string vulnerability
“dirlist.c” line 267. All of them gave some flags brder
to customize the output as desired, for splintwés
necessary to use these flags (or add annotatiorggtta
reasonable amount of errors. The three tools differ

COMMON AND UNIQUE RESULTS

some points, here is a summary based on
experiment.
SUMMARY TABLE
Splint Rats Flawfinder
Ability 10 | yoh canfind | Medium. Medium.
detect Could
... | large scale of Could detect
vulnerabilit - detect the
h faults. the main one.)
ies main one.
Low. Requires High. The
understanding the | High. The output can
notations. The output can still | still be
Ease of use| command needs | be reasonable | reasonable
customization in | without using | without
order to get any flags. using any
reasonable output. flags.
Medium. .
Report Low. Ca’? be Medium rate Low. High
Accurac higher with proper of Ealse rate of false
4 code annotation e positive.
positive.
High.C/C++/
Languages Low. (C/
support Low. (C/C++) Perl/ Python) C++)

Static analysis tools are great aid for progrems.
They spot suspicious code that need to be chechathw
is the first step to detect vulnerabilities butytiéll not
fix them. Therefore, they can never replace humanual
checking and judgment as they can not detect design
problems and can not replace secure implementation.
Also, they have the false positive and false nggati
problem. There is a trade off between the eass®find
report simplicity and the complexity of the anayiey
perform and the scope of the problems they cover.
Nothing is perfect! And there is no perfect statialysis
tool. Human knowledge and experience still needed.

VL. REFERENCES

[1] P. Li and B. Cui, "A comparative study on sedire vulnerability
static analysis technigues and tools, Iriformation Theory and
Information Security (ICITIS), 2010 IEEE Internatal Conference
17-19 Dec. 2010, pp. 521-524.

[2] National Institution of Standard and TechnolddyST). 2012.
National Vulnerability Database. [Online]. Availabl
http://web.nvd.nist.gov

[3] A. Stirov. 2005 Automatic vulnerability detection using static
code analysis[Online]. Available:
http://gcc.vulncheck.org/view/vulnsotirovO5autonogtolf

[4] K. Chen and D. Wagner, "Large-ScaleAnalysi$-ofmat String
Vulnerabilities in Debian," i”007 workshop on Programming
languages and analysis for security (PLAS ,/&gnDiego,California,
2007, pp. 75-84.

[5] D.Evans and D. Larochelle, "Improving secursing extensible
lightweight static analysisSoftware, IEEE vol.19, no.1, pp.42-51,
Jan/Feb 2002

[6] C. Wang. 2012Smbftpd [Online]. Available:
http://www.twbsd.org/enu/smbftpd/index.php

[7] G. Saha. 2008Jbiquity. [Online]. Available:
http://ubiquity.acm.org.libproxy.ucl.ac.uk/articém?id=1348484
[8] D. Larochelle D. Evans. 2003. Splint. [Onlin&jailable:
http://www.splint.org

[9] T. La. 2002. SANS. [Online]. Available: httpsvw.sans.org/
[10] Fortify. 2011.RATS Rough Auditing Tool for Securi@nline].
Available: https://www.fortify.com/ssa-elementsght-
intelligence/rats.html

[11] David A. WheelerFlawfinder.[Online]. Available:
http://www.dwheeler.com/flawfinder

