
Software Security Assessment smbftpd-0.96
Using manual analysis and static analysis tools: Splint, Rats, and Flawfinder

Eman Alashwali
Information Security, Computer Science

University College London (UCL)
London, UK

eman.alashwali.10@ucl.ac.uk

Abstract—This paper aims to assess security for smbftpd-
0.96 program that contains a format string vulnerability.
The assessment will be achieved manually at first, then by
using three different software static analysis tools which are:
Splint, Rats, and Flawfinder. The paper will discuss each
tool's assessment results individually in order to answer the
following questions: Whether the tool discovered the format
string vulnerability? Whether the tool found other
vulnerabilities? And whether the tool was helpful?. At the
end of the paper, there will be a rough comparison between
the three tools to summarize what are the common and
unique results between the tools.

Keywords-manual analysis; static analysis; Splint; Rats;
Flawfinder.

I. INTRODUCTION

 As software applications usage increases, securing
these software becomes more essential [1]. Building se-
cure software is a real challenging mission. It is not un-
common to hear from software security experts that there
is no 100% secure software. The number of discovered
security flaws confirms such claims. In 2011 alone, the
National Vulnerability Database (NVD) [2] published
4,151 vulnerabilities under the software flaws criteria.
Software vulnerabilities are the main source for software
security incidents [3] [1]. These vulnerabilities are caused
by many different reasons, they can be a result of flaws,
back doors made by the developer, or weaknesses in the
programming language itself [1]. Vulnerabilities are bugs
that that can be exploited by untrustworthy to launch at-
tacks against the system.

One of the well known vulnerabilities in software se-

curity area is format string vulnerability. Format string
vulnerability occurs when an untrustworthy has the ability
to provide arbitrary characters in the format string to a
format function [4]. To exemplify, the following code:
printf(string) is an example of format string vulnerability,
while the correct method of writing this code is:
printf(“%s”,string) [4]. Reference to the NVD [2], format
string vulnerability can result in dangerous consequences
such as: violating confidentiality, integrity and availabil-
ity, unauthorized information disclosure, service disrup-
tion and unauthorized access.

Despite the proposed solutions by researchers for the

format string vulnerability since it was publicly recog-
nized as a type of security attacks in 1999, it continued to
appear years after that [4]. For example, the Common
Vulnerabilities and Exposures (CVE) database hit 400

entries for format string vulnerabilities for the year 2007
[4].

To address this problem, various techniques have been
developed to improve software security and discover
software vulnerabilities. Manual analysis and Static analy-
sis are some of the used techniques to spot and correct
software flaws [5].

This paper aims to assess the security of SmbFTPD-
0.96 program which is a FTP daemon built based on the
FTP daemon of FreeBSD 5.4 [6], by using manual
analysis first, and then by using the following static
analysis tools: Splint, Rats and Flawfinder and given that
it contains a format string vulnerability. This is to answer
the following questions: Do the tools find the
vulnerability? Do the tools find other vulnerabilities? Are
the tools helpful?. Also, the paper is going to compare the
three tools to answer the following two questions: What
are common results? What are unique results? This paper
will not cover all security warnings from the tools, but
only the most important vulnerability and bugs.

The coming sections are divided as the following: Sec-

tion 2 will discuss the manual analysis. Section 3 will
discuss automated analysis using three different static
analysis tools: 1) Splint, 2) Rats, and 3) Flawfinder. Sec-
tion 4 will show the common and unique results. Finally,
in section 5 the conclusion.

II. MANUAL ANALYSIS

 As its name implies, manual analysis requires human(s)
to manually test the code [7]. It is one of the oldest
methods to analyze the code and it requires reading the
source code thoroughly looking for vulnerabilities [3]

 In our experiment, in order to perform manual analysis
for smbftpd-0.96 to find vulnerabilities, this required us
to have knowledge about the most common vulnerabilities
such as buffer overflow, format string, etc. and how they
occur. Then, looking at each line of code that is prone to
any of these vulnerabilities. We achieved this by using
“find” and “egrep” linux tools to search for some
functions existence in all C files in smbftpd-0.96 and
display their contexts. The command we used is:” find . -
exec egrep --colour -n -i -H '*printf*|setproctitle|syslog'
/home/e/Desktop/CW1/smbftpd-0.96/filename.c {} \; “

Where the value of “filename” stands for the C file that
we want to analyze.

In our experiment, using “find” and “egerp” tools, it was
possible to perform the search on both directory and file
level. We preferred to analyze one file at a time since
analyzing all C files at once using this method will
produce a tremendous amount of lines and is a processor
exhaustive for our experiment's intel centrino2 laptop with
4 GB RAM. The command must include the function
name(s) that the known vulnerabilities are more likely to
occur in. For example, we search for strcpy to locate
buffer overflow vulnerabilities, and search for format
functions such as printf, sprintf, etc. to look for format
strings vulnerabilities. We observed that when we tried to
include other format functions with the * symbol to
include all possible functions such as: err*, verr*, warn*,
vwarn*, the search time got extremely long since the
letters “err” and “warn” occurred in many contexts such
as comments and not only in the functions we are looking
for. The command's output shows the file name, line
number, and the context that contains the function we
search for, and the function appears in color. After the
command result's displayed, we read the display
thoroughly to make sure they are not vulnerable. If
required, we viewed the full code by opening the file in a
text editor for further checking. The following figure
shows the command output.

Figure 1. Part of the output for the following command:
egrep --colour -n -i -H '*printf*|setproctitle|syslog'
/home/e/Desktop/CW1/smbftpd-0.96/”filename”.c {}
analysis

 By using manual analysis to assess smbftpd
were able to find the format string vulnerability
“dirlist.c” file in “SMBDirList” function in line 267 after
searching about *printf*. It was possible to identify the
format string vulnerability since we were looking in small
number of files for a specific type of vulnerabilities that
occur in limited number of functions. We considered line
267 as a format string vulnerability since it uses a format
function as the following: fprintf(pClient, szBuf) which
allows an attacker to exploit this vulnerability by listing
specially crafted filenames, which will allow him to run
arbitrary commands after login (including anonymous
login), while as explained previously in the introduction,
the correct code must be: fprintf(pClient, "%s", szBuf).
We also tried to find buffer overflow vulnerabilities
manually by searching for strcpy functions. We found this
function used many times in more than file. Clearly, using
this unsafe function represent a bug. It can be exploited if
the source string does not have bound checking. For
example, in file smbftpd.c, we found th
suspicious piece of code in line 337: strcpy(szReturnPath,
szCurDir), but since szCurDir is a value that is not going
to be entered by untrustworthy (any outside user), we
considered this a bug but not a vulnerability. Similar bugs
exists in other files such as ftpd.c, misc.c.

Where the value of “filename” stands for the C file that

In our experiment, using “find” and “egerp” tools, it was
possible to perform the search on both directory and file

analyze one file at a time since
analyzing all C files at once using this method will
produce a tremendous amount of lines and is a processor
exhaustive for our experiment's intel centrino2 laptop with
4 GB RAM. The command must include the function

s) that the known vulnerabilities are more likely to
occur in. For example, we search for strcpy to locate
buffer overflow vulnerabilities, and search for format
functions such as printf, sprintf, etc. to look for format

d that when we tried to
include other format functions with the * symbol to
include all possible functions such as: err*, verr*, warn*,
vwarn*, the search time got extremely long since the
letters “err” and “warn” occurred in many contexts such

and not only in the functions we are looking
for. The command's output shows the file name, line
number, and the context that contains the function we
search for, and the function appears in color. After the
command result's displayed, we read the displayed lines
thoroughly to make sure they are not vulnerable. If
required, we viewed the full code by opening the file in a
text editor for further checking. The following figure

command: find . -exec

H '*printf*|setproctitle|syslog'
{} \; for manual

By using manual analysis to assess smbftpd-0.96, we
were able to find the format string vulnerability in
“dirlist.c” file in “SMBDirList” function in line 267 after
searching about *printf*. It was possible to identify the
format string vulnerability since we were looking in small
number of files for a specific type of vulnerabilities that

d number of functions. We considered line
267 as a format string vulnerability since it uses a format
function as the following: fprintf(pClient, szBuf) which
allows an attacker to exploit this vulnerability by listing

ll allow him to run
arbitrary commands after login (including anonymous
login), while as explained previously in the introduction,
the correct code must be: fprintf(pClient, "%s", szBuf).
We also tried to find buffer overflow vulnerabilities

arching for strcpy functions. We found this
function used many times in more than file. Clearly, using
this unsafe function represent a bug. It can be exploited if
the source string does not have bound checking. For
example, in file smbftpd.c, we found the following
suspicious piece of code in line 337: strcpy(szReturnPath,
szCurDir), but since szCurDir is a value that is not going
to be entered by untrustworthy (any outside user), we
considered this a bug but not a vulnerability. Similar bugs

 Manual analysis was tedious but, at the end, possible.
However, to locate other vulnerabilities with this method,
this was not possible (at least in a reasonable amount of
time). Since this will require us to specify
suspicious function names, and search for them in every
single file. In addition to that, this method is very slow
and as much as we include more functions in the
command, the search process get slower. With manual
analysis, the number of false positive results was very
high as the command we used is merely a matching
process that outputs the functions we search for whenever
occurred without any checking for the correctness of the
code by any means. The checking and deciding is
completely left for the analyzer.

 Manual analysis is known to be time and labor
consuming process [3] [7]. Some might argue that it is the
best method. However, its efficiency mainly relies on
human knowledge and experience [3] [5]. It requires full
understanding for the code, in addition to computer
security experience [3]. It is a feasible method if the
analyzer knows what he is looking for, i.e specific type of
vulnerabilities and in specific file, while this might be
extremely difficult for large programs and different types
of vulnerabilities.

III. AUTOMATIC ANALYSIS USING STATIC ANALYSIS

TOOLS

 To overcome the difficulties in manual analysis, several
solutions have been found to automate the
process, static analysis tools are examples of such
solutions. Static analysis is the process of examining and
making a judgment about the source code without
executing it [3]. A number of advanced and effective
static analysis tools have been developed in the recent
years [1]. Splint, Rats, Flawfinder are examples of static
analysis tools produced to test source codes. In order to
test these tools, we are going to make a security
assessment for the source codes of smbftpd
Splint, Rats and Flawfinder.

A. Splint (Secure Programming Lint)

 Splint is an open source static analysis tool that scans
for security vulnerabilities in C code [8]. In addition of
performing most of its predecessor (Lint tool) checks, it
does more advanced checks by using annotations which
are stylized comments that gives inference about
variables, functions, parameters and types [8] [5].
Annotations are added to libraries and code to document
the programmer intents [5]. Splint checks whether the
code matches the specifications mentioned by annotations
[5]. Splint can detect wide range of problems such as:
Buffer overflow, dereferencing a possibly null pointer,
type mismatches, memory management errors such as
memory leaks, problematic control flow such as
possibility for infinite loops [8]. Unlike other tools, it
checks for coding style and errors that are not related to
security [9]. Splint can perform the checking for a
directory or a single file.

Manual analysis was tedious but, at the end, possible.
However, to locate other vulnerabilities with this method,
this was not possible (at least in a reasonable amount of
time). Since this will require us to specify all the
suspicious function names, and search for them in every
single file. In addition to that, this method is very slow
and as much as we include more functions in the
command, the search process get slower. With manual

sitive results was very
high as the command we used is merely a matching
process that outputs the functions we search for whenever
occurred without any checking for the correctness of the
code by any means. The checking and deciding is

Manual analysis is known to be time and labor
]. Some might argue that it is the

best method. However, its efficiency mainly relies on
] [5]. It requires full

understanding for the code, in addition to computer
]. It is a feasible method if the

analyzer knows what he is looking for, i.e specific type of
while this might be

extremely difficult for large programs and different types

SING STATIC ANALYSIS

To overcome the difficulties in manual analysis, several
solutions have been found to automate the analysis
process, static analysis tools are examples of such
solutions. Static analysis is the process of examining and
making a judgment about the source code without
executing it [3]. A number of advanced and effective

veloped in the recent
years [1]. Splint, Rats, Flawfinder are examples of static
analysis tools produced to test source codes. In order to
test these tools, we are going to make a security
assessment for the source codes of smbftpd-0.96 using

Splint (Secure Programming Lint)

Splint is an open source static analysis tool that scans
for security vulnerabilities in C code [8]. In addition of
performing most of its predecessor (Lint tool) checks, it

using annotations which
are stylized comments that gives inference about
variables, functions, parameters and types [8] [5].
Annotations are added to libraries and code to document
the programmer intents [5]. Splint checks whether the

cifications mentioned by annotations
[5]. Splint can detect wide range of problems such as:
Buffer overflow, dereferencing a possibly null pointer,
type mismatches, memory management errors such as
memory leaks, problematic control flow such as

ity for infinite loops [8]. Unlike other tools, it
checks for coding style and errors that are not related to
security [9]. Splint can perform the checking for a

 After running splint against our code for smbftpd-0.96,
testing one file at a time. When we tried to test “dirlist.c”,
using the command: “splint -Iinclude/ +posixlib -preproc -
D__gnuc_va_list=va_list dirlist.c”, we got 109 warnings
which is a large number and this is for one file consist of
319 lines of code only. The output gives the filename, line
number, column number, description of the warning, and
sometimes, a possible reason for the warning and
suggestion for how to inhibit a warning. Splint could
detect the format string vulnerability in “dirlist.c” in
“SMBDirList” function in line 267. In addition to that, it
detected another 108 warnings. One reason for this high
number of warnings is that our code is not annotated and
splint depend on annotations. Using code annotations can
reduce the number of warnings. For example, the
following warning:
“ dirlist.c:182:25: Null storage szPath passed as non-null
param: strchr (szPath, ...) [..] “ can be resolved by adding
a /*@null@*/ annotation to the function parameter
declaration. In addition to annotations, splint manual has a
long list of command flags to customize the output. For
example, the argument “-nestcomment” will ignore
warnings such as the following: “ dirlist.c:193:34:
Comment starts inside comment A comment open
sequence (/*) appears within a comment. [..]”. Also, the -
weak flag will make weaker checking but the analyzer
must be careful in using these arguments to avoid
overlooking real vulnerabilities. We customized our
command to be: “ splint -nestcomment -Iinclude/
+posixlib -preproc -retvalint -compdef -predboolint -
usedef -mustfreefresh -type +ptrnegate -retvalother -
D__gnuc_va_list=va_list dirlist.c | less”, and we got 27
warnings, one of them is the format string vulnerability in
line 267, and the rest 26 are false positives.

 Splint output was difficult to read and it was difficult to
prioritize the severity warnings. Splint developers say:
“Our design criteria eschew theoretical claims in favor of
useful results.” [5]. Splint uses heuristics to analyze the
code and in order to increase the class of properties to be
checked, it has to sacrifice the results correctness and
completeness, i.e, it will warn falsely and it will not detect
all problems [5]. In order to get more sound reports, the
code must be annotated. Splint reports warnings that
resulted from inconsistencies between the source code,
annotations and convention of the language [5]. The
needed effort in annotating codes stands an obstacle for
adopting annotations [5].

B. Rats (Rough Auditing Tool for Security)

 Rats is an open source analysis tool for vulnerability
scanning. It supports several programming languages such
as: C, C++, PHP, Python and Perl [10]. It discovers
common errors such as buffer overflow, time of check,
time of use (TOCTOU) race conditions [10]. It outputs a
list of possible problems, along with a short description
and suggested solution. Also, it provides a rough
assessment of the problem severity (1: High, 2: Medium,
3: Low) which might help code analysts to manage the
problems' priorities. Rats As its name implies, makes
rough checking. Therefore, it might not discover all
vulnerabilities, and might report false positives. It

performs basic analysis to avoid the conditions that are
obviously not a risk [10].

 Rats can analyze a directory or a single file. If the
command given a directory name, Rats will check all C
files inside this directory. For more convenient output,
Rats provides several options such as -w which allows the
analyzer to list warnings belongs to a certain severity level
(1, 2 or 3). It also has a useful option -i which will display
the functions that takes external input at the end of the
report [10] the thing that makes the report more readable.

 In our assessment we tried both levels, directory and
file. We preferred to perform the assessment by testing
one file at a time. For example, when we analyzed
“dirlist.c”, the file that contains the format string
vulnerability, we typed the following command: “rats
dirlist.c”. Rats discovered the format string vulnerability
and classified it as (High). Also, it discovered another 9
vulnerabilities under the same severity level. Using Rats
in other files, we found that most of false positive
warnings are repeated such as the following: “High: fixed
size local buffer”, that is displayed for any fixed size array
as a caution for buffer overflow when dealing with fixed
size arrays. For example, in dirlist.c line 37, we have char
szPerm[11] when we checked it in the code, we found that
it will be used in a strcpy function, but the source string is
a fixed sstring as the following: strcpy(szPerm,
"lrwxrwxrwx"), which does not represent a risk since the
source string is less than or equal to 10 charachters. Also,
running Rats against different files, we observed that Rats
reports any use of syslog, without checking whether is it
used correctly or not.

 Rats uses lexical analysis instead of parsing the code
[5]. Therefore, it gives imprecise warnings as it warns
whenever it finds a name of unsafe function written in
another ways (for example: local user-defined functions)
without checking whether the reported function is used in
a safe different method or not [5].

C. Flawfinder

 Flawfinder is another open source static analysis tool.
It is limited to C and C++ programming languages only
[11]. It can handle many types of security problems such
as: format string, buffer overflow, race conditions, poor
random number acquisition and potential shell meta
character dangers [11]. Although, it is similar to RATS in
its approach, but it has some features over other tools.
Flwafinder can deal with the gettext (“ a common library
for internationalized programs”), the thing that reduces
the false positive hits in internationalized programs [11].
Second, it can give better risk priority levels as it
determines the risk level by the values of the parameters
of the function in addition to the function itself, for
example, in many contexts, constant strings has lower
risk level than variable ones [11]. Third, it provides the
option to show the context where the flaw occurred
which makes it easier to use and will save the analyzer’s
time [11].

 The output shows a list of the potential risks with the
filename, line number along with the risk level. There are
five levels of risks in flawfinder starting from 5: The
most severe, till 1: the less. Flawfinder provides several
flags to customize the output, some useful flags that we
used in our experiment are: --minlevel that sets a
minimum level of risks to be displayed in the output, and
–context that shows the context that the risk occurred in.
In addition to that, the output can be produced the in
HTML format using –html flag which when exported to
html file gives a more readable output than on the
command line. For the above mentioned features, we
believed that flawfinder is a good option for a third tool
to be used in our experiment.

 Flawfinder can analyze code in directory and file
levels. In our experiment, again, we preferred to test files
one by one. For example, to analyze the code for
“dirlist.c” file, we used the following command:”
flawfinder --context –minlevel=3
/home/e/Desktop/CW1/smbftpd-0.96/dirlist.c
>results.html “. After running the command, flawfinder
could find three potential vulnerabilities “hits”. It could
find the format string vulnerability in addition to another
two vulnerabilities but they are false positives.

 The tool was easy to use, the flags that the tool offers
to adapt the output resulted in a short report that provided
us with the real vulnerability in our code (the format
string vulnerability) with the minimum false positive
records. However, the results are not very accurate as it
classified the format string vulnerability in level 4, while
a false positive was in level 5.

IV. COMMON AND UNIQUE RESULTS

 After trying three tools, it is convenient to summarize
the common and unique results in these tools. All the
three tools were open source tools, easy to get and install.
They could discover the format string vulnerability in
“dirlist.c” line 267. All of them gave some flags in order
to customize the output as desired, for splint, it was
necessary to use these flags (or add annotations) to get a
reasonable amount of errors. The three tools differ in
some points, here is a summary based on our
experiment.

SUMMARY TABLE

 Splint Rats Flawfinder

Ability to
detect
vulnerabilit
ies

High. Can find
large scale of
faults.

Medium.
Could detect
the main one.

Medium.
Could
detect the
main one.

Ease of use

Low. Requires
understanding the
notations. The
command needs
customization in
order to get
reasonable output.

High. The
output can still
be reasonable
without using
any flags.

High. The
output can
still be
reasonable
without
using any
flags.

Report
Accuracy

Low. Can be
higher with proper
code annotation

Medium.
Medium rate
of False
positive.

Low. High
rate of false
positive.

 Languages
support Low. (C / C++)

High.C/C++/
Perl/ Python)

Low. (C /
C++)

 Splint Rats Flawfinder

Tool’s
Scope

General purpose. General
purpose.

General
purpose.

Technique Rule checking Lexical
analysis

Lexical
analysis

Code
treatment

Need pretreatment
for the code.

No need for
pretreatment

No need
for
pretreatme
nt

Report
format

Hard to under-
stand, does not
include the con-
text, does not
classify risks, and
does not suggest
solution.

Easy to read,
risks classifi-
cation in 3
levels, ordered
by risk level,
and suggest
solution

Easy to
read, risks
classifica-
tion in 5
levels,
ordered by
risk level,
suggest
solution

Table 1: Summary of the main differences between the three tools

V. CONCLUSION

 Static analysis tools are great aid for programmers.
They spot suspicious code that need to be checked which
is the first step to detect vulnerabilities but they will not
fix them. Therefore, they can never replace human manual
checking and judgment as they can not detect design
problems and can not replace secure implementation.
Also, they have the false positive and false negative
problem. There is a trade off between the ease of use and
report simplicity and the complexity of the analysis they
perform and the scope of the problems they cover.
Nothing is perfect! And there is no perfect static analysis
tool. Human knowledge and experience still needed.

VI. REFERENCES
 [1] P. Li and B. Cui, "A comparative study on software vulnerability
static analysis techniques and tools," in Information Theory and
Information Security (ICITIS), 2010 IEEE International Conference,
17-19 Dec. 2010, pp. 521-524.
[2] National Institution of Standard and Technology (NIST). 2012.
National Vulnerability Database. [Online]. Available:
http://web.nvd.nist.gov
[3] A. Stirov. 2005, Automatic vulnerability detection using static
code analysis. [Online]. Available:
http://gcc.vulncheck.org/view/vulnsotirov05automatic.pdf
[4] K. Chen and D. Wagner, "Large-ScaleAnalysis of Format String
Vulnerabilities in Debian," in 2007 workshop on Programming
languages and analysis for security (PLAS '07), SanDiego,California,
2007, pp. 75-84.
[5] D.Evans and D. Larochelle, "Improving security using extensible
lightweight static analysis," Software, IEEE , vol.19, no.1, pp.42-51,
Jan/Feb 2002
[6] C. Wang. 2012, Smbftpd. [Online]. Available:
http://www.twbsd.org/enu/smbftpd/index.php
[7] G. Saha. 2008. Ubiquity. [Online]. Available:
http://ubiquity.acm.org.libproxy.ucl.ac.uk/article.cfm?id=1348484
[8] D. Larochelle D. Evans. 2003. Splint. [Online]. Available:
http://www.splint.org
[9] T. La. 2002. SANS. [Online]. Available: http://www.sans.org/
[10] Fortify. 2011. RATS Rough Auditing Tool for Security. [Online].
Available: https://www.fortify.com/ssa-elements/threat-
intelligence/rats.html
[11] David A. Wheeler. Flawfinder. [Online]. Available:
http://www.dwheeler.com/flawfinder

