COMPGS10/M028 Language Based Security

Course Work 2, Due Date: 16 April 2012
By: Eman Alashwali

Question (1): All of the questions except for question 4 refer to the following program:
if (@>c)
f=c+d
else
while (h > 0)
b=e+7

Use Volpano and Smith type inference rules for a while language to establish whether the
above program satisfies noninterference with respect to the following security policy.
<Lat,<>={F<E,E<B,E<D,E<C,B<A D=<A C=<A}

and

p={(aA), (c,D), (f.A), (d,C), (h.F), (bB), (e,E) }

Answer (1):

A{a, f}

SN

B{b} C{d} D{c}
N7
E {e}

{e

F {h}

1. First, we type the true branchf=c +d

2. Since f has type A var, we try to type the assignment as A cmd. To do this, we must type
c+d as A. We start by typing the variables ¢ and d using the (R-VAL), (BASE),
(SUBTYPE) rules.
(VAR) 7 F c:Dvar

F:rrP c:Dvar

F:rr FcD
Since f is of type A, and the command must agree on type, we will coerce the types of ¢
and d to make them type A (the LUB for D).

(BASE)

(R-VAL)

D<A
FDcA

H|rrl-' c:D DEA

ler FcA
Similar steps for d in order to agree on type A (the LUB for D).:

(VAR) T F d:Cvar

(SUBTYPE)

F:rrlﬂ d: Cvar
R-VAL) ———
() Trac
C=<A

BASE) £,

Trdc cea

(SUBTYPE) o
. Typec+d

Trea Traa

(PLUS) T E crda

Now, we can apply the (ASSIGN) rule:

F:rrk f: Avar F:rr F c+d: A
F:rr F fi=c+d: Acmd

(ASSIGN)

Next, we type the false branch. We type b = e + 7. Since b is type B, we will coerce the
type of e + 7 to make it type B (the LUB for F).
(VAR) 7T F e:Evar

F:rr}« e: Evar

F:rr F e E
. We type 7 Using the axiom (INT), then we coerce the type of 7 to make it type E.

Using (BASE) and (SUBTYPE)
(INT) 7V F 7:F (The type of 7 is | the lowest type in the lattice (bottom) which is F).

(R-VAL)

F<E

BASE) 75

F:rr}‘ 7:F FCE

ler F7:E
Now, we can apply the rule (PLUS)

F:rr F e E TI—7:E

F:rr F e+7:E

(SUBTYPE)

(PLUS)

10. To type b = e + 7. All the types have to agree on type B, so we have to coerce the type
of e+7 to make it type B.

(BASE) —=

FECB

F:rr I e+7:E ECB
;-:rr I e+7:B

11. Now, we can apply the (ASSIGN) rule:

(SUBTYPE)

f:rr F b: Bvar Hfl— e+7:B

ASSIGN
(SSIG) F:';I*b:=e+7:chd

12. Next, we have to type the while statement. All types must agree. First, we need to type
the control expression h>0. We first type h
(VAR) 7 F h:Fvar

F:rrP h: F var

F:rr F h:F
13. We type 0 using the axiom (INT), then use the rule (PLUS) to type h>0

(INT) 7 FO:F
Ttnr TroF

TEns>orF

(R-VAL)

(PLUS)

14. Now, to type the while statement, all types must agree. We can coerce the type of B cmd
to F cmd since the ordering of cmd types is in the opposite direction to the base types.

TPFEB
CMD
()TPchdchmd

F:rrk b:=e+7: B cmd F:r{l-chd € Fcmd
F:rr Fb:=e+7: Fcmd

(SUBTYPE)

Tt 1>0:F 7 Fbi= e+7:F cmd
(WHILE) ==
F:rr F while h>0 do b:=e+7:F cmd

15. To type the Boolean expression for the if statement if (a > c). First we type a:
(VAR) T F a:Avar

F:rr}« a: Avar

F:rr}* a:A

16. Similar for c:
(VAR) 7 F c:Dvar

(R-VAL)

F:rrP c:Dvar

TP c:D

17. We have to coerce the type D to make types agrees

D <A
(BASE) oA

(R-VAL)

(SUBTYPE) —1.cR DA
{FcA

18. Now, we can apply the rule (PLUS) to type a>c
(PLUS) { I;'?I:A fFcA

{ Fa>cA
19. To type the if statement, we need all the types to agree. Since A is the highest data type
we can not change the type of the statement a>c. The type of the true branch agree with
this. The problem is the type of the false branch. Since the lattice of the cmd type is
inverted, A cmd is on the bottom and so F cmd > A cmd. Since we can not move down
the lattice, we can not use the subtype rules to give the while (h>0) do b=e+7 the type A
cmd. So, we can not type the if statement, so it is not flow secure.

20. End solution

Question (2): State the safety condition for assigning a value to a slot in the decentralized label
model. Then draw the Basic Block Graph for the above program and derive the block label for

each block using the underline notation
Answer (2):

1. The safety condition for assigning a value to a slot, e.g. f=c+d
a. Writing a value to a slot: The relabeling must be a restriction, i.e. the slot must

have more owners or fewer readers for some owners or both

2. The Basic Block Graph for the above program :

Branch on a>c B=1
Fi=c+d B=a>c Branchonh>0 B=h>0Ua>c

B:=e+7 B=h>0Ua>c

|
I
—

Exit

Question (3): Construct a syntax tree and use the inference rules for natural semantics to give
the natural semantics for the above program when it starts in a state s=<a —5,b —-4,¢c — 3,
d—-2,e—-1,f—-0h—--1>

Answer (3):

1. The natural semantics is as follows:

tt
f<fi=c+d,s>—s
(Ifos) ™ I B [[a>c]] = tt

<ifa>cthenf.=c+delsewhile (h>0)bi=e+7,5,>—>5;

s1=s[f— 5]

2. The syntax tree is as follows:

if

/ \
= While h>0
N ™.
N\ RN
C d b

RN
e 7

Question (4): Consider the program: if (a<3)thenb:=2elseb:=b % 2

(a) Both a and b are 2 bit variables with values in the range [0..3]. Assume a uniform probability
distribution on the input space. If a is confidential and b is public, calculate the leakage into the
final value of b.

(b) State and explain the general definition of leakage. Which definition of leakage is suitable for

this program?

Answer (4.a):
Input space has u.p.d of 1/16 each state
The size of the secret space is 4.1/4. log, 4 = 2 bits

Low can make 3 observations via variable b: 0, 1 and 3.

Observing 2 can correspond to values {0,1,2} of a.

Observing 1 can correspond to {3}

Observing 0 can correspond to {3}
P(h=3)=4/16, p(h=0 or 1 or 2)=12/16

(0,00 (0,1) (0,2) (0,3) AN 0

(1L,0) (L1) (1,2) (1,3) If (a<3) then b=2 R

(20 21) 22 (23) y 1

(3,1) (3,3) (3,00 (3,2) _ Pl 2

Information about a from observation H([12/16, 4/16]) = H([3/4, 1/4]) =
3/41log, 4/3 + 1/41log, 4 =0.308 + 0.5=0.808 ~ 0.81

Answer (4. b): The general definition of leakage is: L = I(H; L’|L). That is the mutual information
between the random variable in the low output after discounting knowledge of the random

variable in the low inputs

Question (5): Consider the first program with the following security policy: <Lat, < > ={L < H}
with p ={ (a,H), (c,L), (f,.L), (d,L), (h,L), (b,L), (e,L)}, perform a flow logic based analysis for non-
interference on the program using this security policy and demonstrate whether the program is
flow secure.

Answer (5):

1. First, we need to label the program statements.
(if (@ > c) then (f := ¢ + d)*1 else (while (h > 0) do (b :=e + 7)'2)'3)"

2. Then, use the analysis rules to generate the constraints for each label.
D()21d[f—{c,d}]
D()21d[b—{e}]

G (15)2{3}UFV(h>0) UG (I) UG (Is) ; D(15)

D(1) 21d U D(ls) ; D(l2)

D(ls) 2 X (I5) x FV(a >c)

G ()2 G () UG (13)

(e€G () »G()2FV(a>c))
D(l,) 2 D(l) U D(ls)

D(l)) 2 X () x FV(a > c)

3. Wehave FV(h>0)={h}, X () ={b}and FV(a>c)={a,c}, X () ={f, b}
S0, £ (I3) x FV(h > 0) = {b « {h} }and X (l) x FV(a > c) = {f — {a, c}, b — {a, ¢} }. We

have to substitute these values into the constraints to create a working constraint set:
D(ly) 21d [f—{c, d}]
D()21d[b— {e}]
G (13)2{3U{h}UG () UG (I3) ; D(I.)
D(13) 21d U D (Is) ; D(l,)
D(ls) 2{b — {n}}
G ()2 G () UG (I
(¢€Gl)—G)2{ac})
D(ls) 2 D (1) U D(l3)
D()) 2{f—>{a,c},b—{a c}}

4. Next, perform the iterations, the first iteration is for initialization, then in repeat iterations
and in each iteration substitute the inclusions from the previous iterations until we reach
a fixed point.

e |teration O:
Gl)20

D) =20

G()20

D(y) =20

G()20

D() 20

Gl)2 0@

D) 20

Iteration 1

)20

)2 1d[f - {cd}]
)20

) 21d [b—{e}]
l

I

I

o) o ®

o Y

g)2{,h}
3)2ld[b—{h}]

)20

) 2{f- {a,c},b- {ac}}
e |Iteration 2

G(1)20

D@U)21d[f- {cd}]
G(1)20

D()21d[b—{e}]
G(I3)2{+,h}
D(s)2ld[b—{h,e}]

G ()2 {+,h}
D(g)21d[{f> {ac d},b- {a,ch}}]

o Y

(
(
(
(
(
(
(
(

G
D

e lteration 3
G1)29
D()=21d[f- {cd}]
G()20
D()21d[b—{e}]
G (3)2{e,h}

D(s)2ld[b—{h,e}]

5(14)2 {e,hac}

D()21d[{f- {acd},b- {ache}}]
e |[teration 4

G ()20

D(U)=21d[f- {cd}]

G()20

D () 2Id[b—{e}]

G ()2 {+,h}

D(5)21d[b—{h,e}]

G ()2 {*,hac}

D(U)21d[{f- {acd},b- {ache}]]

Since nothing has been updated, we have reached a fixed point, giving the smallest solution. If
we check the G and D for |4, the label for the whole program, we find that a € G (l,) and every

low security variable depends on the value of a, so the program is not flow secure and will not

satisfy non-interference property.

