
COMPGS10/M028 Language Based Security

Course Work 2, Due Date: 16 April 2012

By: Eman Alashwali

Question (1): All of the questions except for question 4 refer to the following program:

if (a > c)

 f = c + d

else

 while (h > 0)

 b = e + 7

Use Volpano and Smith type inference rules for a while language to establish whether the

above program satisfies noninterference with respect to the following security policy.

<Lat, ≤ > = { F ≤ E, E ≤ B, E ≤ D, E ≤ C, B ≤ A, D ≤ A, C ≤ A }

and

ρ = { (a,A), (c,D), (f,A), (d,C), (h,F), (b,B), (e,E) }

Answer (1):

1. First, we type the true branch f = c + d

2. Since f has type A var, we try to type the assignment as A cmd. To do this, we must type

c+d as A. We start by typing the variables c and d using the (R-VAL), (BASE),

(SUBTYPE) rules.

(VAR)

B {b} C {d} D {c}

A {a, f}

E {e}

F {h}

(R-VAL)

3. Since f is of type A, and the command must agree on type, we will coerce the types of c

and d to make them type A (the LUB for D).

(BASE)

(SUBTYPE)

4. Similar steps for d in order to agree on type A (the LUB for D).:

(VAR)

(R-VAL)

(BASE)

(SUBTYPE)

5. Type c+d

(PLUS)

6. Now, we can apply the (ASSIGN) rule:

(ASSIGN)

7. Next, we type the false branch. We type b = e + 7. Since b is type B, we will coerce the

type of e + 7 to make it type B (the LUB for F).

 (VAR)

(R-VAL)

8. We type 7 Using the axiom (INT), then we coerce the type of 7 to make it type E.

Using (BASE) and (SUBTYPE)

(INT) (The type of 7 is ⟘ the lowest type in the lattice (bottom) which is F).

(BASE)

(SUBTYPE)

9. Now, we can apply the rule (PLUS)

(PLUS)

10. To type b = e + 7. All the types have to agree on type B, so we have to coerce the type

of e+7 to make it type B.

(BASE)

(SUBTYPE)

11. Now, we can apply the (ASSIGN) rule:

 (ASSIGN)

12. Next, we have to type the while statement. All types must agree. First, we need to type

the control expression h>0. We first type h

(VAR)

(R-VAL)

13. We type 0 using the axiom (INT), then use the rule (PLUS) to type h>0

(INT)

(PLUS)

14. Now, to type the while statement, all types must agree. We can coerce the type of B cmd

to F cmd since the ordering of cmd types is in the opposite direction to the base types.

(CMD)

(SUBTYPE)

 (WHILE)

15. To type the Boolean expression for the if statement if (a > c). First we type a:

(VAR)

(R-VAL)

16. Similar for c:

(VAR)

(R-VAL)

17. We have to coerce the type D to make types agrees

(BASE)

(SUBTYPE)

18. Now, we can apply the rule (PLUS) to type a > c

(PLUS)

19. To type the if statement, we need all the types to agree. Since A is the highest data type

we can not change the type of the statement a>c. The type of the true branch agree with

this. The problem is the type of the false branch. Since the lattice of the cmd type is

inverted, A cmd is on the bottom and so F cmd > A cmd. Since we can not move down

the lattice, we can not use the subtype rules to give the while (h>0) do b=e+7 the type A

cmd. So, we can not type the if statement, so it is not flow secure.

20. End solution

Question (2): State the safety condition for assigning a value to a slot in the decentralized label

model. Then draw the Basic Block Graph for the above program and derive the block label for

each block using the underline notation

Answer (2):

1. The safety condition for assigning a value to a slot, e.g. f = c + d

a. Writing a value to a slot: The relabeling must be a restriction, i.e. the slot must

have more owners or fewer readers for some owners or both

2. The Basic Block Graph for the above program :

Branch on a>c

F:= c + d Branch on h > 0

B : = e + 7

Exit

B = h>0 U a > c

B = a > c B = h>0 U a > c

B = ⟘

B = ⟘

Question (3): Construct a syntax tree and use the inference rules for natural semantics to give

the natural semantics for the above program when it starts in a state s =< a → 5, b → 4, c → 3,

d → 2, e → 1, f → 0, h → -1 >

Answer (3):

1. The natural semantics is as follows:

 If < f:= c + d, s> → s1

 < if a > c then f:= c + d else while (h > 0) b:= e + 7, s0 > → s1

s1 = s[f → 5]

2. The syntax tree is as follows:

Question (4): Consider the program: if (a < 3) then b := 2 else b := b % 2

(a) Both a and b are 2 bit variables with values in the range [0..3]. Assume a uniform probability

distribution on the input space. If a is confidential and b is public, calculate the leakage into the

final value of b.

(b) State and explain the general definition of leakage. Which definition of leakage is suitable for

this program?

Answer (4.a):

Input space has u.p.d of 1/16 each state

The size of the secret space is 4.1/4. = 2 bits

Low can make 3 observations via variable b: 0, 1 and 3.

If B [[a>c]] = tt (Ifns)

tt

if

: =

f +

c d

While h> 0

: =

b +

e 7

Observing 2 can correspond to values {0,1,2} of a.

Observing 1 can correspond to {3}

Observing 0 can correspond to {3}

P(h=3)=4/16 , p(h=0 or 1 or 2)=12/16

Information about a from observation H([12/16, 4/16]) = H([3/4, 1/4]) =

3/4 + 1/4 = 0.308 + 0.5 = 0.808 0.81

Answer (4. b): The general definition of leakage is: L = I(H; L’|L). That is the mutual information

between the random variable in the low output after discounting knowledge of the random

variable in the low inputs

Question (5): Consider the first program with the following security policy: <Lat, ≤ > = {L ≤ H}

with ρ = { (a,H), (c,L), (f,L), (d,L), (h,L), (b,L), (e,L)}, perform a flow logic based analysis for non-

interference on the program using this security policy and demonstrate whether the program is

flow secure.

Answer (5):

1. First, we need to label the program statements.

(if (a > c) then (f := c + d)
l1

1 else (while (h > 0) do (b := e + 7)
 l2

)
 l3

)
 l4

2. Then, use the analysis rules to generate the constraints for each label.

 ̂ (l1) Id [f → {c, d}]

 ̂ (l2) Id [b → {e}]

 ̂ (l3) { FV(h > 0) ̂ (l2) ̂ (l3) ; ̂(l2)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

 (3,1) (3,3) (3,0) (3,2)

If (a<3) then b=2

else b=b%2

0

1

2

 ̂(l3) Id ̂(l3) ; ̂(l2)

 ̂(l3) ̂ (l3) x FV(a > c)

 ̂ (l4) ̂ (l1) ̂ (l3)

(∈ ̂ (l4) → ̂ (l4) FV(a > c))

 ̂(l4) ̂(l1) ̂(l3)

 ̂(l4) ̂ (l4) x FV(a > c)

3. We have FV(h > 0) = { h }, ̂ (l3) = { b } and FV(a > c) = { a, c }, ̂ (l4) = { f, b }

So, ̂ (l3) x FV(h > 0) = { b ← {h} } and ̂ (l4) x FV(a > c) = { f ← {a, c}, b ← {a, c} }. We

have to substitute these values into the constraints to create a working constraint set:

 ̂(l1) Id [f → {c, d}]

 ̂ (l2) Id [b → {e}]

 ̂ (l3) { { h } ̂ (l2) ̂ (l3) ; ̂(l2)

 ̂(l3) Id ̂ (l3) ; ̂(l2)

 ̂(l3) { b → {h} }

 ̂ (l4) ̂ (l1) ̂ (l3)

(∈ ̂ (l4) → ̂ (l4) { a, c })

 ̂(l4) ̂ (l1) ̂(l3)

 ̂(l4) { f → {a, c}, b → {a, c} }

4. Next, perform the iterations, the first iteration is for initialization, then in repeat iterations

and in each iteration substitute the inclusions from the previous iterations until we reach

a fixed point.

 Iteration 0:

 ̂(l1) ∅

 ̂(l1) ∅

 ̂(l2) ∅

 ̂(l2) ∅

 ̂ (l3) ∅

 ̂(l3) ∅

 ̂ (l4) ∅

 ̂(l4) ∅

 Iteration 1

 ̂ (l1) ∅

 ̂ (l1) [{]

 ̂ (l2) ∅

 ̂ (l2) Id [b → { e }]

 ̂ (l3) { , h }

 ̂ (l3) Id [b → { h }]

 ̂ (l4) ∅

 ̂ (l4) { { {

 Iteration 2

 ̂ (l1) ∅

 ̂ (l1) [{]

 ̂ (l2) ∅

 ̂ (l2) Id [b → { e }]

 ̂ (l3) { , h }

 ̂ (l3) Id [b → { h , e }]

 ̂ (l4) { , h }

 ̂ (l4) Id [{ { {]

 Iteration 3

 ̂ (l1) ∅

 ̂ (l1) [{]

 ̂ (l2) ∅

 ̂ (l2) Id [b → { e }]

 ̂ (l3) { , h }

 ̂ (l3) Id [b → { h , e }]

 ̂ (l4) { , h, a, c }

 ̂ (l4) Id [{ { {]

 Iteration 4

 ̂ (l1) ∅

 ̂ (l1) [{]

 ̂ (l2) ∅

 ̂ (l2) Id [b → { e }]

 ̂ (l3) { , h }

 ̂ (l3) Id [b → { h , e }]

 ̂ (l4) { , h, a, c }

 ̂ (l4) Id [{ { {]

Since nothing has been updated, we have reached a fixed point, giving the smallest solution. If

we check the ̂ and ̂ for l4, the label for the whole program, we find that a ∈ ̂ (l4) and every

low security variable depends on the value of a, so the program is not flow secure and will not

satisfy non-interference property.

